Biopolym. Cell. 2011; 27(2):118-123.
Structure and Function of Biopolymers
The role of connexin 37 gene polymorphism (1019C > T; Pro319Ser) in cardiovascular disease
1Pitha J., 2Pithova P., 1Hubacek J. A.
  1. Institute for Clinical and Experimental Medicine
    1952/8, Videnska St., Praha 4, Prague, Czech Republic, 14021
  2. Teaching Hospital Motol, 2nd Medical School, Department of Medicine
    84, Vuvalu St., Praha 5, Prague, Czech Republic, 150 06

Abstract

In spite of the strong prognostic value of all traditional cardiovascular risk factors, still striking differences exist in the prevalence of clinical events between patients at apparently similar risk. One of the main reasons is different genetic background. One of recently discussed candidate genes for cardiovascular disease is the gene for the protein Connexin 37 (Cx37). This protein is a part of gap junctions responsible for communications between cells including cells in the vessel wall. Studies focused on the association between Cx37 gene polymorphism (1019C > T; Pro319Ser) and cardiovascular disease demonstrate inconsistent results. Our findings in 1.316 men and women indicated that the Cx37 gene polymorphism (genotype CC) is significantly associated with acute coronary syndrome in non-smoking women. In addition, in urban and rural women from general population (n = 1.056) with impaired fasting glycaemia the same genotype is associated with increased intima media thickness of carotid arteries measured by ultrasound. Finally, in 289 women with diabetes type 1 or 2, and in 208 women from general population with central obesity, the CC genotype was associated with lower ankle brachial blood pressure index. These data indicate that Cx37 gene polymorphism could have gender- and smoking-dependent effects on acute coronary events and glucose dependent effect on atherosclerosis in women.
Keywords: connexin 37 gene polymorphism, atherosclerosis, acute coronary syndromes, women smoking, glycaemia

References

[1] European cardiovascular disease statistics 2009 Brussels: European Heart Network; 2009.
[2] Humphries S. E., Cooper J. A., Talmud P. J., Miller G. J. Candidate gene genotypes, along with conventional risk factor assessment, improve estimation of coronary heart disease risk in healthy UK men Clin. Chem 2007 53, N 1 P. 8–16.
[3] Humphries S. E., Yiannakouris N., Talmud P. J. Cardiovascular disease risk prediction using genetic information (gene scores): is it really informative? Curr. Opin. Lipidol 2008 19, N 2 P. 128–132.
[4] Humphries S. E., Dunning A., Xu C. F., Peacock R., Talmud P., Hamsten A. DNA polymorphism studies. Approaches to elucidating multifactorial ischaemic heart disease: the apo B gene as an example Ann. Med 1992 24, N 5 P. 349–356.
[5] Berg K. Role of genetic factors in atherosclerotic dinase Am. J. Clin. Nutr 1989 49, N 5 (Suppl) P. 1025–1029.
[6] Talmud P. J. Gene-environment interaction and its impact on coronary heart disease risk Nutr. Metab. Cardiovasc. Dis 2007 17, N 2 P. 148–152.
[7] Talmud P. J. How to identify gene-environment interactions in a multifactorial disease: CHD as an example Proc. Nutr. Soc 2004 63, N 1 P. 5–10.
[8] Kwak B. R., Mulhaupt F., Veillard N., Gros D. B., Mach F. Altered pattern of vascular connexin expression in atherosclerotic plaques Arterioscler. Thromb. Vasc. Biol 2002 22, N 2 P. 225–230.
[9] Brisset A. C., Isakson B. E., Kwak B. R. Connexins in vascular physiology and pathology// Antioxid. Redox. Signal 2009 11, N 2 P. 267–282.
[10] Derouette J. P., Wong C., Burnier L., Morel S., Sutter E., Galan K., Brisset A. C., Roth I., Chadjichristos C. E., Kwak B. R. Molecular role of C37 in advanced atherosclerosis: a micro-array study Atherosclerosis 2009 206, N 1 P. 69–76.
[11] Morel S., Burnier L., Kwak B. R. Connexins participate in the initiation and progression of atherosclerosis Semin. Immunopathol 2009 31, N 1 P. 49–61.
[12] Wong C. W., Christen T., Roth I., Chadjichristos C. E., Derouet te J. P., Foglia B. F., Chanson M., Goodenough D. A., Kwak B. R. Connexin 37 protects against atherosclerosis by regulating monocyte adhesion Nat. Med 2006 12, N 8 P. 950–954.
[13] Yeh H. I., Chou Y., Liu H. F., Chang S. C., Tsai C. H. Connexin 37 gene polymorphism and coronary artery disease in Taiwan Int. J. Cardiol 2001 81, N 2–3 P. 251–255.
[14] Yamada Y., Izawa H., Ichihara S., Takatsu F., Ishihara H., Hirayama H., Sone T., Tanaka M., Yokota M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes N. Engl. J. Med 2002 347, N 24 P. 1916– 1923.
[15] Listi F., Candore G., Balistreri C. R., Caruso M., Incalcaterra E., Hoffmann E., Lio D., Caruso C. Connexin37 1019 gene polymorphism in myocardial infarction patients and centenarians Atherosclerosis 2007 191, N 2 P. 460–461.
[16] Listi F., Candore G., Lio D., Russo M., Colonna-Romano G., Caruso M., Hoffmann E., Caruso C. Association between C1019T polymorphism of connexin37 and acute myocardial infarction: a study in patients from Sicily Int. J. Cardiol 2005 102, N 2 P. 269–271.
[17] Horan P. G., Allen A. R., Patterson C. C., Spence M. S., McGlinchey P. G., McKeown P. P. The connexin 37 gene polymorphism and coronary artery disease in Ireland Heart 2006 92, N 3 P. 395–396.
[18] Leu H. B., Chung C. M., Chuang S. Y., Bai C. H., Chen J. R., Chen J. W., Pan W. H. Genetic variants of connexin37 are associated with carotid intima-medial thickness and future onset of ischemic stroke Atherosclerosis 2011 214, N 1 P. 101– 106.
[19] Hubacek J. A., Stanek V., Gebauerova M., Pilipcincova A., Poledne R., Aschermann M., Skalicka H., Matouskova J., Kruger A., Penicka M., Hrabakova H., Veselka J., Hajek P., Lanska V., Adamkova V., Pit'ha J. Lack of an association between connexin-37, stromelysin-1, plasminogen activator-inhibitor type 1 and lymphotoxin-alpha genes and acute coronary syndrome in Czech Caucasians Exp. Clin. Cardiol 2010 15, N 3 e52– e56.
[20] Boerma M., Forsberg L., Van Zeijl L., Morgenstern R., De Faire U., Lemne C., Erlinge D., Thulin T., Hong Y., Cotgreave I. A. A genetic polymorphism in connexin 37 as a prognostic marker for atherosclerotic plaque development J. Int. Med 1999 246, N 2 P. 211–218.
[21] Collings A., Islam M. S., Juonala M., Rontu R., Kahonen M., Hutri-Kahonen N., Laitinen T., Marniemi J., Viikari J. S., Raitakari O. T., Lehtimaki T. J. Associations between connexin37 gene polymorphism and markers of subclinical atherosclerosis: the cardiovascular risk in young finns study Atherosclerosis 2007 195, N 2 P. 379–384.
[22] Collings A., Raitakari O. T., Juonala M., Mansikkaniemi K., Kahonen M., Hutri-Kahonen N., Marniemi J., Viikari J. S., Lehtimaki T. J. The influence of smoking and homocysteine on subclinical atherosclerosis is modified by the connexin37 C1019T polymorphism – the cardiovascular risk in young finns study Clin. Chem. Lab. Med 2008 46, N 8 P. 1102–1108.
[23] Pitha J., Hubacek J. A., Pithova P. The connexin 37 (1019C > T) gene polymorphism is associated with subclinical atherosclerosis in women with type 1 and 2 diabetes and in women with central obesity Physiol. Res 2010 59, N 6 P. 1029–1032.
[24] Meugnier E., Rome S., Vidal H. Regulation of gene expression by glukose Curr. Opin. Clin. Nutr. Metab. Care 2007 10, N 4 P. 518–522.
[25] Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells Nucl. Acid Res 1988 16, N 3 P. 1215.
[26] Herrington D. M. Cardiovascular genomics: outcomes and implications Can. J. Cardiol 2010 26, Suppl A P. 60A–63A.