Biopolym. Cell. 2011; 27(1):17-24.
Reviews
2D- and 3D-cell culture
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
The cultivation of mammalian cells in three-dimensional conditions acquires a priority in a variety of biomedical applications. In the areas of toxicology and anticancer drug development it concerns a significant difference of responses to proapoptotic factors of the cells cultured in 2D versus 3D environment. Besides, the clear-cut differences have been found in cell polarity, cytoskeleton structure, distribution of receptors to wide range of hormones, growth factors, etc. in mammalian cells depending on culture conditions. It is resulted in different response of cultured cells to extracellular stimuli. Multicellular spheroids are regarded presently as the most convenient model of solid tumour growth in vitro. The cultivation of thyroid follicles, mammary acini and other structure units, maintaining initial tissue organization, allows studying the behavior, biochemical features and gene profile of differentiated cells. On the other hand, 3D cultures have some limitations in comparison with a well established monolayer culture. The advantages and disadvantages of each type of cultures and their application in biological and medical researches will be discussed in this review.
Keywords: 2D cultivation, 3D cultivation, resistance, differentiation
Full text: (PDF, in English) (PDF, in Russian)
References
[1]
Lambert R. A. The effect of dilution of plasma medium on the growth and fat accumulation of cells in tissue cultures J. Exp. Med 1914 19, N 4 P. 398–405.
[2]
Loeb L. On the growth of epithelium in agar and blood-serum in the living body J. Med. Res 1902 8, N 1 P. 109–115.
[3]
Carrel A., Burrows M. T. Cultivation in vitro of malignant tumors J. Exp. Med 1911 13, N 5 P. 571–575.
[4]
Carrel A., Burrows M. T. Cultivation of tissues in vitro and its technique J. Exp. Med 1911 13, N 3 P. 387–396.
[5]
Carrel A., Ingebrigtsen R. The production of antibodies by tissues living outside of the organism J. Exp. Med 1912 15, N 3 P. 287–291.
[7]
Danilov R. K., Gololobov V. G., Deev R. V. Aleksandr Aleksandrovich Maksimov – vydayushchiysya otechestvennyy gistolog (stranitsy zhyzni i nauchnoe nasledie) Vestnik Rossiyskoy Voenno-Meditsinskoy Akademii 2003 2, N 6 P. 54–60.
[8]
Earle W. R., Schilling E. L., Stark T. H., Straus N. P., Brown M. F., Shelton E. Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells J. Natl Cancer Inst 1943 4 P. 165–212.
[9]
Gey G. O., Coffman W. D., Kubicek M. T. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium Cancer Res 1952 12 P. 264–265.
[10]
Hayflik L., Moorhead P. S. The serial cultivation of human diploid cell strains Exp. Cell. Res 1961 25, N 3 P. 585–621.
[11]
Freshney R. I. Culture of animal cells. A manual of basic technique / 4th edition New York: Wiley-Liss, 2000 600 p.
[12]
Adams RLP. Cell Culture for Biochemists. Elsevier/North-Holland Biomedical Press. 1980; 292 p.
[13]
Park I. H., Arora N., Huo H., Maherali N., Ahfeldt T., Shimamura A., Lensch M. W., Cowan C., Hochedlinger K., Daley G. Q. Disease-specific induced pluripotent stem cells Cell 2008 134, N 5 P. 877–886.
[14]
Grimm D., Kossmehl P., Shakibaei M., Schulze-Tanzil G., Pickenhahn H., Bauer J., Paul M., Cogoli A. Effects of simulated microgravity on thyroid carcinoma cells J. Gravit. Physiol 2002 9, N 1 P. 253–256.
[15]
Schweppe R. E., Klopper J. P., Korch C., Pugazhenthi U., Benezra M., Knauf J. A., Fagin J. A., Marlow L. A., Copland J. A., Smallridge R. C., Haugen B. R. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification J. Clin. Endocrinol. Metab 2008 93, N 11 P. 4331–4341.
[16]
Velicky J., Sterzl I., Mandys V., Bednar J., Titlbach M., Niahodil V. Morphological changes in the human thyroid gland cultivated in continual flow system Zhur. Mikrosk. Anat. Forsch 1990 104, N 5 P. 788–796.
[17]
Bauer M. F., Herzog V. Mini organ culture of thyroid tissue: a new technique for maintaining the structural and functional integrity of thyroid tissue in vitro Lab. Invest 1988 59, N 2 P. 281–291.
[18]
Massart C., Gibassier J., Genetet N., Raoul M. L., Baron M., Le Gall F., Lucas C. Effect of lymphocytes on hormonal secretion by autologous thyrocytes cultured in monolayers J. Mol. Endocrinol 1996 17, N 3 P. 185–195.
[19]
Westermark B., Heldin N. E., Westermark K. Structural and functional properties of thyroid follicle cells in culture Acta. Physiol. Scand. Suppl 1990 592 P. 15–24.
[20]
Gartner R. Thyroid growth in vitro Exp. Clin. Endocrinol 1992 100, N 1–2 P. 32–35.
[21]
Kozlowski M., Gajewska M., Majewska A., Jank M., Motyl T. Differences in growth and transcriptomic profile of bovine mammary epithelial monolayer and three-dimensional cell cultures J. Physiol. Pharmacol 2009 60, Suppl 1 P. 5–14.
[22]
Rosines E., Schmidt H. J., Nigam S. K. The effect of hyaluronic acid size and concentration on branching morphogenesis and tubule differentiation in developing kidney culture systems: potential applications to engineering of renal tissues Biomaterials 2007 28, N 32 P. 4806–4817.
[23]
Mauchamp J., Mirrione A., Alquier C., Andre F. Follicle-like structure and polarized monolayer: role of the extracellular matrix on thyroid cell organization in primary culture Biol. Cell 1998 90, N 5 P. 369–380.
[24]
Pellerin S., Croizet K., Rabilloud R., Feige J. J., Rousset B. Regulation of the three-dimensional organization of thyroid epithelial cells into follicle structures by the matricellular protein, thrombospondin-1 Endocrinology 1999 140, N 3 P. 1094–1103.
[25]
Chambard M., Verrier B., Gabrion J., Mauchamp J. Polarization of thyroid cells in culture: evidence for the basolateral localization of the iodide «pump» and of the thyroid-stimulating hormone receptor-adenyl cyclase complex J. Cell Biol 1983 96, N 4 P. 1172–1177.
[26]
Grande M., Franzen A., Karlsson J. O., Ericson L. E., Heldin N. E., Nilsson M. Transforming growth factorand epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes J. Cell Sci 2002 115, pt 22 P. 4227–4236.
[27]
Nilsson M., Husmark J., Nilsson B., Tisell L. E., Ericson L. E. Primary culture of human thyrocytes in Transwell bicameral chamber: thyrotropin promotes polarization and epithelial barrier function Eur. J. Endocrinol 1996 135, N 4 P. 469–480.
[28]
Chomyak O. G., Sidorenko M. V. Multicellular spheroids model in oncology Exp. Oncol 2001 23, N 4 P. 236–241.
[29]
Mueller-Klieser W. Multicellular spheroids. A review on cellular aggregates in cancer research J. Cancer Res. Clin. Oncol 1987 113, N 2 P. 101–122.
[30]
Nederman T., Norling B., Glimelius B., Carlsson J., Brunk U. Demonstration of an extracellular matrix in multicellular tumor spheroids Cancer Res 1984 44, N 7 P. 3090–3097.
[31]
Infanger M., Kossmehl P., Shakibaei M., Bauer J., KossmehlZorn S., Cogoli A., Curcio F., Oksche A., Wehland M., Kreutz R., Paul M., Grimm D. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells Cell Tissue Res 2006 324, N 2 P. 267–277.
[32]
Grimm D., Bauer J., Kromer E., Steinbach P., Riegger G., Hofstadter F. Human follicular and papillary thyroid carcinoma cells interact differently with human venous endothelial cells Thyroid 1995 5, N 3 P. 155–164.
[33]
Vuillermoz B., Khoruzhenko A., D'Onofrio M. F., Ramont L., Venteo L., Perreau C., Antonicelli F., Maquart F. X., Wegrowski Y. The small leucine-rich proteoglycan lumican inhibits melanoma progression Exp. Cell Res 2004 296, N 2 P. 294–306.
[34]
Breus O. S., Nemazanyy I. O., Gout I. T., Filonenko V.V., Panasyuk G. G. CoA Synthase influences adherence-independent growth and survival of mammalian cells in vitro Biopolym. Cell 2009 25, N 5 P. 384–389.
[35]
Westermark K., Nilsson M., Karlsson F. A. Effects of interleukin 1 alpha on porcine thyroid follicles in suspension culture Acta Endocrinol. (Copenh) 1990 122, N 4 P. 505–512.
[36]
Khoruzhenko A. I., Cherednyk O. V., Filonenko V. V. Subcellular localization of S6K1 and S6K2 forms of ribosomal protein S6 kinase in primary monolayer culture of rat thyrocytes Biopolym. Cell 2008 24, N 1 P. 35–40.
[37]
Khoruzhenko A. I., Cherednyk O. V., Filonenko V. V. Immunohistochemical analysis of subcellular localization of S6K1 and S6K2 forms of ribosomal protein S6 kinase in rat thyrocytes under conditions of twoand three-dimensional culture Biopolym. Cell 2008 24, N 6 P. 470–475.
[38]
Pomahac B., Svensjo T., Yao F., Brown H., Eriksson E. Tissue engineering of skin Crit. Rev. Oral Biol. Med 1998 9, N 3 P. 333–344.
[39]
Nizheradze K. Concanavalin A, but not glycated albumin, increases subendothelial deposition of von Willebrand factor in vitro Endothelium 2006 13, N 4 P. 245–248.
[40]
Ayala P., Lopez J. I., Desai T. A. Microtopographical cues in 3D attenuate fibrotic phenotype and extracellular matrix deposition: implications for tissue regeneration Tissue Eng. Part A 2010 16, N 8 P. 2519–2527.
[41]
Kotlarz G., Wegrowski Y., Martiny L., Declerck P. J., Bellon G. Enhanced expression of plasminogen activator inhibitor-1 by dedifferentiated thyrocytes Biochem. Biophys. Res. Communs 2002 295, N 3 P. 737–743.
[43]
Weaver V. M., Petersen O. W., Wang F., Larabell C. A., Briand P., Damsky C., Bissell M. J. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies J. Cell. Biol 1997 137, N 1 P. 231–245.
[44]
Wang F., Weaver V. M., Petersen O. W., Larabell C. A., Dedhar S., Briand P., Lupu R., Bissell M. J. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology Proc. Natl Acad. Sci. USA 1998 95, N 25 P. 14821–14826.
[45]
Overall C. M., Lopez-Otin C. Strategies for MMP inhibition in cancer: innovations for the post-trial era Nat. Rev. Cancer 2002 2, N 9 P. 657–672.
[46]
Wolf K., Mazo I., Leung H., Engelke K., von Andrian U. H., Deryugina E. I., Strongin A. Y., Brocker E. B., Friedl P. Compensation mechanism in tumor cell migration: mesenchymalamoeboid transition after blocking of pericellular proteolysis J. Cell. Biol 2003 160, N 2 P. 267–277.
[47]
Sahai E., Marshall C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis Nat. Cell Biol 2003 5, N 8 P. 711–719.
[48]
Cukierman E., Pankov R., Stevens D. R., Yamada K. M. Taking cell-matrix adhesions to the third dimension Science 2001 294, N 5547 P. 1708–1712.
[49]
Kim K. U., Wilson S. M., Abayasiriwardana K. S., Collins R., Fjellbirkeland L., Xu Z., Jablons D. M., Nishimura S. L., Broaddus V. C. A novel in vitro model of human mesothelioma for studying tumor biology and apoptotic resistance Am. J. Respir. Cell. Mol. Biol 2005 33, N 6 P. 541–548.
[50]
Wilson S. M., Barbone D., Yang T. M., Jablons D. M., Bueno R., Sugarbaker D. J., Nishimura S. L., Gordon G. J., Broaddus V. C. mTOR mediates survival signals in malignant mesothelioma grown as tumor fragment spheroids Am. J. Respir. Cell. Mol. Biol 2008 39, N 5 P. 576–583.
[51]
Yang T. M., Barbone D., Fennell D. A., Broaddus V. C. Bcl-2 family proteins contribute to apoptotic resistance in lung cancer multicellular spheroids Am. J. Respir. Cell Mol. Biol 2009 41, N 1 P. 14–23.
[52]
Tomei A. A., Boschetti F., Gervaso F., Swartz M. A. 3D collagen cultures under well-defined dynamic strain: a novel strain device with a porous elastomeric support Biotechnol. Bioeng 2009 103, N 1 P. 217–225.
[53]
Fischbach C., Kong H. J., Hsiong S. X., Evangelista M. B., Yuen W., Mooney D. J. Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement Proc. Natl Acad. Sci. USA 2009 106, N 2 P. 399–404.
[54]
Hadjipanayi E., Mudera V., Brown R. A. Guiding cell migration in 3D: a collagen matrix with graded directional stiffness Cell Motil. Cytoskeleton 2009 66, N 3 P. 121–128.
[55]
Roig A. I., Hight S. K., Shay J. W. Twoand three-dimensional models for risk assessment of radiation-enhanced colorectal tumorigenesis Radiat. Res 2009 171, N 1 P. 33–40.