Biopolym. Cell. 2010; 26(4):295-298.
Molecular Biophysics
Stability of mutagenic tautomers of uracil and its halogen derivatives: the results of quantum-mechanical investigation
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - Taras Shevchenko National University of Kyiv
64/13, Volodymyrska Str., Kyiv, Ukraine, 01601 - Institute of High Technologies,
Taras Shevchenko National University of Kyiv
2, korp.5, Pr. Akademika Hlushkova, Kyiv, Ukraine, 03022
Abstract
Aim. To investigate by quantum-mechanical methods the uracil (Ura) intramolecular tautomerisation and effect of changing the thymine (Thy) methyl (Me) group with halogen on this process. Methods. Non-empirical quantum mechanics, analysis of the electron density by means of Bader’s atom in molecules (AIM) theory and physical-chemical kinetics were used. Results. It has been established for the first time that the substitution of halogen (Br, F, Cl) for thymine Me-group has practically no effect on the main physical-chemical characteristics of the intramolecular tautomerisation. At the same time, the energy of Ura tautomerisation increases by 3.08 kcal/mole in comparison with the corresponding value for Thy under standard conditions. Conclusions. Thus, Thy, unlike Ura, is obviously able, as a canonical DNA nucleotide base, to provide together with Ade, Gua and Cyt an acceptable mutability degree of the genom from the point of view of its adaptation reserve. A mutagenic action of the Ura halogen derivatives is not directly associated with their tautomerisation.
Keywords: DNA bases, uracil, mutagenic tautomers, uracil halogenation, lifetime, intramolecular tautomerisation, quantum-mechanical calculations
Full text: (PDF, in Ukrainian)
References
[1]
Brovarets' O. O., Hovorun D. M. How stable are the mutagenic tautomers of DNA bases? Biopolym. Cell 2010 26, N 1:72–76.
[3]
Fryxell K. J., Zuckerkandl E. Cytosine deamination plays a primary role in the evolution of mammalian isochores Mol. Biol. Evol 2000 17, N 9:1371–1383.
[4]
Litman R. M., Pardee A. B. The induction of mutants of bacteriophage T2 by 5-bromuracile. III. Nutritional and structural evidence regarding mutagenic action Biochim. Biophys. Acta 1960 42:117–130.
[5]
Rudner R., Shapiro H., Chargaff E. Distribution of 5-bromouracil among the pyrimidine clusters of the deoxyribonucleotide acid of E. coli Nature 1962 195, N 4837:143– 146.
[6]
Kramer G., Wittmann H. G., Schuster H. Die Erzeutung von Mutanten des Tabakmosaikvirus durch den Einbau von Fluorouracil in die Virus-nukleinsaure Z. Naturforsch. B 1964 19:46–51.
[8]
Hanus M., Kabela M., Nachtigallova D., Hobza P. Mutagenic properties of 5-halogenuracils: correlated quantum chemical ab initio study Biochemistry 2005 44, N 5:1701– 1707.
[9]
Orozco M., Hernandez B., Luque F. J. Tautomerism of 1-methyl derivatives of uracil, thymine, 5-bromouracil. Is tautomerism the basis for the mutagenicity of 5-bromouridine? J. Phys. Chem. B 1998 102, N 26:5228–5233.
[10]
Kochina OS, Zhyrakivsky RO, Hovorun DM. Influence of tautomerisation of nucleobases on conformational properties of nucleosides: a quantum-mechanical study withing the method of the density functional theory. Dopovidi Nats Akad Nauk Ukrainy. 2008; (1):181-6.
[11]
Inge-Vechtomov S. G. Neodnoznachnost’ matrichnykh protsessov kak faktor adaptatsii Sistemy nadezhnosti kletki. Pod red. D. M. Grodzinskogo Kyiv: Nauk. dumka, 1977 P. 75–85.
[12]
Lantsov V. A. DNA repair and carcinogenesis: universal mechanisms for repair in pro- and eukaryotes and consequences of the damage in humans. Mol Biol (Mosk). 1998; 32, N 5 P. 757–772.
[13]
Watson J. D., Crick F. H. C. The structure of DNA Cold Spring Harbor Symp. Quant. Biol 1953 18:123–131.