Biopolym. Cell. 2010; 26(1):72-76.
Molecular Biophysics
How stable are the mutagenic tautomers of DNA bases?
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - Taras Shevchenko National University of Kyiv
64, Volodymyrska Str., Kyiv, Ukraine, 01601 - Institute of High Technologies,
Taras Shevchenko National University of Kyiv
2, korp.5, Pr. Akademika Hlushkova, Kyiv, Ukraine, 03022
Abstract
Aim. To determine the lifetime of the mutagenic tautomers of DNA base pairs through the investigation of the physicochemical mechanisms of their intramolecular proton transfer. Methods. Non-empirical quantum chemistry, the analysis of the electron density by means of Bader’s atom in molecules (AIM) theory and physicochemical kinetics were used. Results. Physicochemical character of the transition state of the intramolecular tautome- risation of DNA bases was investigated, the lifetime of mutagenic tautomers was calculated. Conclusions. The lifetime of the DNA bases mutagenic tautomers by 3–10 orders exceeds typical time of DNA replication in the cell (~103 s). This fact confirms that the postulate, on which the Watson-Crick tautomeric hypothesis of spontaneous transitions grounds, is adequate. The absence of intramolecular H-bonds in the canonical and mutagenic tautomeric forms determine their high stability.
Keywords: DNA bases, mutagenic tautomers, the lifetime, intramolecular proton transfer, quantum-chemical calculations
Full text: (PDF, in Ukrainian)
References
[1]
Watson J. D., Crick F. H. C. The structure of DNA Cold Spring Harbor Symp. Quant. Biol 1953 18 P. 123–131.
[2]
Topal M. D., Fresco J. R. Complementary base pairing and the origin of the substitution mutations Nature 1976 263, N 5575 P. 285–289.
[3]
Topal M. D., Fresco J. R. Base pairing and fidelity in codonanticodon interaction Nature 1976 263, N 5575 P. 289– 293.
[4]
Kwiatkovski J. S., Pullman B. Tautomerism and electronic structure of biological pyrimidines. Adv. Heterocycl. Chem 1975 18 P. 199–335.
[5]
Danilov V. I., Anisimov V. M., Kurita N., Hovorun D. M. MP2 and DFT studies of the DNA rare base pairs : the molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chem. Phys. Lett 2005 412, N 4–6 P. 285–293.
[6]
Dreyfus M., Bensaude O., Dodin G., Dubois J. E. Tautomerism in cytosine and 3-methylcytosine. A thermodynamic and kinetic study J. Am. Chem. Soc 1976 98, N 20 P. 6338– 6349.
[7]
Brown R. D., Godfrey P. D., McNaughton D., Pierlot A. P. Tautomers of cytosine by microwave spectroscopy. J. Am. Chem. Soc 1989 111, N 6 P. 2308–2310.
[8]
Szczesniak M., Szczepaniak K., Kwiatkowski J. S., KuBulat K., Person W. B. Matrix isolation infrared studies of nucleic acid constituents. 5. Experimental matrix-isolation and theoretical ab initio SCF molecular orbital studies of the infrared spectra of cytosine monomers. J. Am. Chem. Soc 1988 110, N 25 P. 8319–8330.
[9]
Szczepaniak K, Szczesniak M. Matrix isolation infrared studies of nucleic acid constituents: Part 4. Guanine and 9-methylguanine monomers and their keto—enol tautomerism. J Mol Struct. 1987;156(1-2):29-42.
[10]
Fowler R. G., Degnen G. E., Cox E. C. Mutational specificity of a conditional Escherichia coli mutator, mutD5. Mol. Gen. Genet 1974 133, N 3 P. 179–191.
[11]
Les A., Adamowicz L., Bartlett R. J. Relative stability of cytosine tautomers with the coupled cluster method and firstorder correlation orbitals. J. Phys. Chem 1989 93, N 10 P. 4001–4005.
[12]
Estrin D. A., Paglieri L., Corongiu G. A density functional study of tautomerism of uracil and cytosine. J. Phys. Chem 1994 98, N 22 P. 5653–5660.
[13]
Ha T.-K., Keller H.-J., Gunde R., Gunthard H.-H. Energy increment method based on quantum chemical results: a general recipe for approximative prediction of isomerization and tautomerization energies of pyrimidine and purine nucleic acid bases and related compounds J. Phys. Chem. A 1999 103, N 33 P. 6612–6623.
[14]
Podolyan Y., Gorb L., Leszczynski J. Ab initio study of the prototropic tautomerism of cytosine and guanine and their mutations. Int. J. Mol. Sci 2003 4, N 7 P. 410–421.
[15]
Morpurgo S., Bossa M., Morpurgo G. O. Ab initio study of intramolecular proton transfer reactions in cytosine. Chem. Phys. Lett 1997 280, N 3–4 P. 233–238.
[16]
Peng C., Schlegel H. B. Combining synchronous transit and quasi-newton methods to find transition states. Israel J. Chem 1993 33, N 4 P. 449–454.
[17]
Peng C., Ayala P. Y., Schlegel H. B., Frisch M. J. Using redundant internal coordinates to optimize equilibrium geometries and transition states J. Comput. Chem 1996 17, N 1 P. 49–56.
[18]
Marshall A. G. Biophysical chemistry, principles, techniques and applications New York: Wiley & Sons, 1978 482 p.
[19]
Bader R. W. F. Atoms in molecules. A quantum theory Oxford: Clarendon Press, 1990 532 p.
[20]
Florian J., Hrouda V., Hobza P. Proton transfer in the adenine-thymine base pair. J. Am. Chem. Soc 1994 116, N 4 P. 1457–1460.
[21]
Hrouda V., Florian J., Hobza P. Structure, energetics, and harmonic vibrational spectra of the adenine-thymine and adenine*-thymine* base pairs: gradient nonempirical and semiempirical study J. Phys. Chem 1993 97, N 8 P.1542– 1557.
[22]
Gorb L., Podolyan Y., Dziekonski P., Sokalski W. A., Leszczynski J. Double-proton transfer in adenine-thymine and guanine-cytosine base pairs. A post-Hartree-Fock ab initio study J. Am. Chem. Soc 2004 126, N 32 P. 10119–10129.
[23]
Inge-Vechtomov S. G. Neodnoznachnost' matrichnykh protsessov kak faktor adaptatsii Sistemy nadezhnosti kletki. Ed. D. M. Grodzinskogo Kyiv: Naukova dumka, 1977 P. 75–85.