Biopolym. Cell. 2010; 26(1):56-61.
Molecular and Cell Biotechnologies
Optimization of bioselective membrane of amperometric enzyme sensor on basis of glucose oxidase using NH2-modified multi-wall carbone nanotubes
1Biloivan O. A., 1Rogaleva N. S., 1Korpan Ya. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Aim. To investigate a possibility of application of multi-wall carbone nanotubes modified with NH2-groups (MWCNT-NH2) for creation of sensitive elements of the amperometric biosensor based on immobilized oxidoreductases, in particular, glucose oxidase (GOD). To study electrochemical properties of the membranes obtained. Methods. Experiments were carried out with amperometric methods using the μStat 200 device («DropSens», Spain). The enzymes were immobilised in glutaraldehyde vapour. Results. The method of formation of bioselective matrix based on immobilised GOD with MNP-NH2 on the surface of gold amperometric electrodes was optimised. Optimal working conditions of the biosensor developed were determined. Conclusion. MWCNT integration into a bioselective matrix improves the biosensor analytical characteristics which means: higher signal value, wider linear range of glucose analysis, and possibility of substrate determination in wide range of working potential.
Keywords: NH2-modified, multi-wall carbone nanotubes, amperometric biosensor, oxidoreductase, glucose oxidase

References

[1] Agui L., Yanez-Sedeno P., Pingarron J. M. Role of carbon nanotubes in electrochemical chemistry. A review Anal. Chim. Acta 2008 622, N 1–2 P. 11–47.
[2] Sotiropoulou S., Gavalas V., Vamvakaki N. A., Chaniotakis N. A. Novel carbon materials in biosensor system. Biosensors and Bioelectronics 2003 18, N 2–3 P. 211–215.
[3] Sotiropoulou S., Chaniotakis N. A. Carbon nanotube arraybased biosensor Anal. Bioanal. Chem 2003 375, N 1 P. 103–105.
[4] Sheng Q., Zheng J. Bienzyme system for the biocatalyzed deposition of polyaniline templated by multiwalled carbon nanotubes: A biosensor design Biosensors and Bioelectronics 2009 24, N 6 P. 1621–1628.
[5] Guan W. J., Li Y., Chen Y.-Q., Zhang X.-B., Hu G.-Q. Glucose biosensor based on multi-wall carbon nanotubes and screen printed electrodes. Biosensors and Bioelectronics 2005 21, N 3 P. 508–512.
[6] Starodub N. F., Hustochka L. N., Lazarenko A. V. Bubryak O. A., Terentev A. G., El'skaya A. V. Integration of biological material in the electrochemical biosensor devices. Anal. Chem. USSR. 1990; 45, pt 2 P. 1038–1044.
[7] Kanukov V. N., Strekalovskaya A. D., Kil'kinov V. I., Bazarova N. V. Materials for modern medicine: Tutorial Orenburg: SOU GEA, 2004 113 p.
[8] Danyleyko L. V., Schuvailo O. N., Arkhypova V. M., Soldatkin A. P., Dzyadevych S. V. Development of amperometric enzyme biosensor based on carbon fibre electrode and immobilized glucose oxidase Biopolym. Cell. 2003; 19, N 1 P. 76–80.
[9] Schuvailo O. N., Danyleyko L. V., Arkhypova V. M., Dzyadevych S. V., El’skaya A. V., Cespuglio R., Soldatkin A. P. Develop ment of microbiosensors based on carbon fibre for in vivo determination of glucose, acetylcholine and choline Biopolym. Cell. 2002; 18, N 6 P. 489–495.
[10] Immobilised cells and enzymes. A practical approach. Ed. J. Woodward Moscow: Mir, 1988 215 p.
[11] Shkotova L. V., Soldatkin A. P., Dzyadevych S. V. Adaptation of amperometric enzyme biosensor for glucose analysis in wine Ukr. Biokhim. Zh. 2004 76, N 3 P. 114–121.
[12] Davidova M. E., Kurova V. S., Cuhachyova M. V., Kupletskaya M. B., Riabov A. D., Netrusov A. I. Stability and catalytic properties of glucose oxidase from Penicilliu funiculosum G-15. Vestn. MGU, set 2, Chemistry 2002 43, N 6 P. 366–370.
[13] Trevan M. D. Immobilized enzymes Moscow: Mir, 1983 P. 47–51.