Biopolym. Cell. 2009; 25(6):476-483.
Molecular Biophysics
Semi-quantitative model of the gating of KcsA ion channel. 2. Dynamic self-organization model of the gating
1Kharkyanen V. N., 1Yesylevskyy S. O., 1Berezetskaya N. M., 2Boiteux C., 2Ramseyer Ch.
  1. Institute of Physics, NAS of Ukraine
    46, Prospect Nauki, Kyiv, Ukraine, 03028
  2. UMR CNRS 6624, Faculte des Sciences et Techniques, Universite de Franche-Comte
    16 route de Gray, La Bouloie, 25030 Besancon Cedex, France

Abstract

The aim of this series of papers is to develop the semi-quantitative theory of the gating of KcsA channel. Methods. For this purpose available structural and electrophysiological data and the results of molecular dynamics simulations were used in the context of the concept of dynamical self-organization. In the second paper we describe the principles of dynamic self-organization and develop the theory of KcsA channel gating based on this concept. Conclusions. Present work is the first successful attempt of combining the structure and dynamics of real protein and the general concept of dynamic self-organization.
Keywords: Ñ–on channel, KcsA channel, dynamic self-organization, channel gating

References

[1] Christophorov L. N., Kharkyanen V. N. Synergetic mechanisms of structural regulation of the electron transfer and other reactions of biological macromolecules Chem. Phys 2005 319, N 1–3:330–341.
[2] Goushcha A. O., Kharkyanen V. N., Scott G. W., Holzwarth A. R. Self-regulation phenomena in bacterial reaction centers. I. General theory Biophys. J 2000 79, N 3:1237–1252.
[3] Grishchenko O. V., Kharkyanen V. N., Kononenko N. I.,Veinreb G. E. Ion regulation of the kinetics of potential-dependent potassium channels J. Biol. Phys 1997 23, N 4 P. 195–208.
[4] Barabash Y. M., Berezetskaya N. M., Christophorov L. N., Goushcha A. O., Kharkyanen V. N. Effects of structural memory in protein reactions J. Chem. Phys 2001 116, N 10:4339–4352.
[5] Goushcha A. O., Manzo A. J., Scott G. W., Christophorov L. N., Knox P. P., Barabash Y. M., Kapoustina M. T., Berezetska N. M., Kharkyanen V. N. Self-regulation phenomena applied to bacterial reaction centers: 2. Nonequilibrium adiabatic potential: dark and light conformations revisited Biophys. J 2003 84, N 2:1146–1160.
[6] Chinarov V. A., Gaididei Y. B., Kharkyanen V. N., Sit'ko S. P. Ion pores in biological membranes as self-organizing bistable systems Phys. Rev. A 1992 46, N 8:5232–5241.
[7] Christophorov L. N. Conformation-dependent charge transport: a new stochastic approach Phys. Lett. A 1995 205, N 1:14–17.
[8] Zakharian E., Reusch R. N. Streptomyces lividans potassium channel KcsA is regulated by the potassium electrochemical gradient Biochem. and Biophys. Res. Communs 2004 316, N 2:429–436.
[9] Doyle D. A., Cabral J. M., Pfuzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity Science 1998 280, N 3:69–77.
[10] Zhou Y., Moralis-Cabral J. H., Kaufman A., MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 &A resolution Nature 2001 414, N 6859:43–48.
[11] Mashl R. J., Tang Y., Schnitzer J., Jakobsson E. Hierarchical approach to predicting permeation in ion channels Biophys. J 2001 81, N 5:2473–2483.
[12] Kharkyanen V. N., Yesylevskyy S. O., Berezetskaya N. M., Boiteux C., Ramseyer Ch. Semi-quantitative model of the gating of KcsA ion channel. 1. Geometry and energetics of the gating Biopolym. Cell 2009 25, N 5:390–397.
[13] Choe H., Sackin H., Palmer L.G. Permeation and gating of an inwardly rectifying potassium channel. Evidence for a variable enrgy well J. Gen. Physiol 1998 112, N 4:443–446.
[14] Liu Y., Jurman M. E.,Yellen G. Dynamic rearrangement of the outer mouth of a K+ channel during gating Neuron 1996 16, N 4:859–867.
[15] Christophorov L. N., Holzwarth A. R., Kharkyanen V. N., van Mourik F. Structure-function self-organization in nonequilibrium macromolecular systems Chem. Phys 2000 256, N 1:45–60.
[16] Li Y., Um S. Y., McDonald T. V. Voltage-gated potassium channels: regulation by accessory subunits Neuroscientist 2006 12, N 3:199–210.