Biopolym. Cell. 2009; 25(4):298-306.
Molecular Biophysics
Study on models of O2 binding to heme using density functional theory
1Minaev B. F., 1Minaeva V. A., 1Obushko E. N., 2Hovorun D. M.
  1. B. Khmelnyckyy Cherkasy National University
    81, Shevchenko Blvd., Cherkassy, Ukraine, 18031
  2. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680


Aim. To study a mechanism of molecular oxygen binding to heme three models of geometry structure of the complex are considered: the axis of O2 molecule is situated perpendicularly to the porphin macrocycle, parallel, and angularly. Methods. The Fe(II) porphin complexes with dioxygen are calculated by the quantum-chemical method of density functional theory with the UB3LYP/6-311G approximation. Results. The optimized geometry and electron structures as well as the absorption IR spectra of the complexes in the high-spin (septet) state are described. Conclusions. It is shown that the main mechanism of spin-orbit coupling during the O2 binding to heme is connected with peculiarity of the O2 molecule electronic structure.
Keywords: oxyhemoglobin, spin states, IR absorption spectrum, spin-orbit coupling


[1] Inorganic biochemistry. Eds M. E. Volpin, K. B. Jacimirskij Moscow: Mir, 1978 Vol. 2 736 p.
[2] Wagner W.-D., Paeng I. R., Nakamoto K. Simultaneous observation of O-O and Fe-O2 stretching vibration of Fe(TPP)O2 in dioxygen matrices by resonanse Raman spectroscopy J. Amer. Chem. Soc 1988 110, N 16:5565– 5567.
[3] Potter W. T., Tucker M. P., Houtchens R. A., Caughey W. S. Oxygen infrared spectra of oxyhemoglobins and oxymyoglobins. Evidence of two major liganded oxygen structures Biochemistry 1987 26, N 15:4699–4707.
[4] Watanabe T., Ama T., Nakamoto K. Matrix-isolation infrared spectra of dioxygen adducts of iron(II) porphyrins and related compounds J. Phys. Chem 1984 88, N 3:440–445.
[5] Jensen K. P., Roos O. B., Ryde U. O2-binding to heme: electronic structure and spectrum of oxyheme, studied by multiconfigurational methods J. Inorg. Biochem 2005 99, N 1:45–54.
[6] Blomberg L. M., Blomberg M. R. A., Siegbahn P. E. M. A theoretical study on the binding of O2, NO and CO to heme proteins J. Inorg. Biochem 2005 99, N 4:949–958.
[7] Franzen S. Spin-dependent mechanism for diatomic ligand binding to heme Proc. Nat. Acad. Sci. USA 2002 99, N 26:16754–16759.
[8] Jensen K. P., Ryde U. How O2 binds to heme? J. Biol. Chem 2004 279, N 15:14561–14569.
[9] Tsuda M., Dino W. A., Kasai H. Spin polarization effect on O2 dissociation from Heme-O2 adduct Jap. J. Appl. Phys 2005 44, N 2:L57–L59.
[10] Kozlowski M. P., Kuta J., Ohta T., Kitagava T. Resonance Raman enhancement of FeIV=O stretch in high-valent iron porphyrins: An insight from TD-DFT calculations J. Inorg. Biochem 2006 100, N 4:744–750.
[11] Momenteau M., Reed C. A. ESR study of hemoglobin and myoglobin Chem. Rev 1994 94, N 3:659–685.
[12] Minaev B. F. Electronic mechanisms of activation of molecular oxygen Rus. Chem. Rev 2007 76, N 11:989–1012.
[13] Strickland N., Harvey J. N. Spin-forbidden ligand binding to the Ferrous–Heme group: ab inito and DFT studies J. Phys. Chem 2007 111, N 4:841–852.
[14] Becke A. D. Density-functional thermochemistry. The role of exact exchange J. Chem. Phys 1993 98, N 7:5648–5655.
[15] Burke K., Werschnik J., Gross E. K. U. Time-dependent density functional theory: Past, present, and future J. Chem. Phys 2005 123, N 6 P.062206.
[16] Lee C., Yang W., Parr R. G. Development of the ColleSalvetti correlation-energy formula into a functional of the electron density Phys. Rev 1988 37, N 2:785–789.
[17] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery Jr., J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian, H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 03, Revision C.02 Wallingford CT: Gaussian Inc., 2004.
[18] Minaev B. F., Minaeva V. A., Vasenko A. N. Spin states of the Fe(II)-porphin molecule: quantum chemical study by the density functional method. Ukr. Bioorg. Acta. 2007; 5(1):24–31.
[19] Solovjev KN, Gladkov LL, Starukhin AS, Shkirman SF. Spectroscopy of porphyrins: vibrational states. Minsk: Nauka i Tekhnika, 1985; 415 p.
[20] Huber K.-P., Herzberg G. Constants of diatomic molecules. New York: Van Nostrand, 1984 368 p.
[21] Perutz M. F. Stereochemistry of cooperative effects in haemoglobin Nature 1970 228:726–734.
[22] Minaev B. F., Minaev A. B., Hovorun D. M. Study of the infrared spectrum of the Fe(II)-porphin molecule in different spin states by quantum chemical method of the density functional theory Biopolym. Cell 2007 23, N 6:519–528.