Biopolym. Cell. 2009; 25(3):218-225.
Molecular Biophysics
Phase diagram of Ni2+ ions complexes with polyU·polyA·polyU
1Sorokin V. A., 1Valeev V. A., 1Usenko E. L.
  1. B. I. Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine
    47, Prospekt Lenina, Kharkiv, Ukraine, 61103

Abstract

Aim. To investigate Ni2+ ion effect on the conformational equilibrium of the three-stranded polynucleotide polyU·polyA·polyU and to ascertain thermodynamic parameters of the metal complex formation. Methods. The differential UV spectroscopy and thermal denaturation. Results. Dependences of conformational transition (Tm) of polyU·polyA·polyU (A2U) on Ni2+ ion concentration (up to 0.001 M) under conditions close to physiological ones (0.1 M Na+, pH 7) were obtained. At [Ni2+] < 3·10–4 M two branches are observed in the phase diagram, corresponding to A2U→ polyA·polyU (AU) + polyU (3→2) and AU→polyA + polyU (2→1) transitions. Only A2U→polyU + polyA + polyU (3→1) transition is realized at higher Ni2+ concentrations and upon A2U heating. Effective binding constants are determined for Ni2+ ions with AU (850 M–1) and A2U (1300 M–1) as well as 3→2 transition enthalpy (ΔH3→2 = 4±1 kcal/mol·triplet). Conclusions. By the equilibrium binding theory the thermodynamic nature of (Tm)2→3 different behavior in the phase diagram of AU in the presence of Mg2+ and Ni2+ ions was determined. A larger difference of the magnesium affinity to A2U and AU as compared with that to AU and poly A results in (Tm)2→3 decrease whereas the opposite ratio of Ni2+ ion binding constants induces its increasing.
Keywords: polynucleotides, metal ions, conformational transitions

References

[1] Field A. K. Oligonucleotides as inhibitors of human immuno deficiency virus Curr. Opin. Mol. Ther. 1999; 1(3):323–331.
[2] Giovannangeli C., Rougee M., Garestier T., Thuong N. T., Helene C. Triple-helix formation by oligonucleotides containing the three bases thymine, cytosine and guanine Proc. Nat. Acad. Sci. USA 1992 89, N 18:8631–8635.
[3] Plum G. E., Pilch D. S., Singleton S. C., Breslauer K. J. Nucleic acid hybridisation: triplex stability and energetic Annu. Rev. Biophys. and Biomol. Struct 1995 24:319–350.
[4] Coogan T. P., Latta D. M., Imbra R. J., Costa M. Effect of nickel (II) on DNA-protein interactions Biol. Trace Elem. Res 1989 21, N 3:13–21.
[5] Dally H., Hartwig A. Induction and repair inhibition of oxidative DNA damage by nickel(II) and cadmium(II) in mammalian cells Carcinogenesis 1997 18, N 5:1021–1026.
[6] Hartwig A. Recent advances in metal carcinogenicity Pure Appl. Chem 2000 72, N 6:1007–1014.
[7] Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.
[8] Sorokin V. A., Valeev V. A., Usenko E. L., Blagoi Yu. P. Effect of Cd2+ ions on conformational equilibrium of three-stranded polyUpolyApolyU polynucleotide under near-physiological conditions Biopolym. Cell 2007 23, N 5:433–440.
[9] Andronikashvili E. L. Malignization and change of some physico-chemical properties of biomacromolecules and supramolecular structures. Biophysics. 1987; 32(5):782–799.
[10] Aoki K. Nucleosides, nucleotides and metal ions Metalloproteins: Chemical properties and biological effects. Eds S.Otsuka, T.Yamanaka Amsterdam etc.: Elsevier, 1988:457–490.
[11] Krakauer H., Sturtevant J. M. Heats of the helix-coil transition of the poyA–polyU complexes Biopolymers 1968 6, N 4:491–512.
[12] Krakauer H. A thermodynamic analysis of the influence of simple monoand divalent cations on the conformational transitions of polynucleotide complexes Biochemistry 1974 13, N 12:2579–2589.
[13] Klump H. H. Energetics of order /order transition in nucleic acids Can. J. Chem 1988 66:804–811.
[14] Sorokin V. A., Valeev V. A., Gladchenko G. O., Degtyar M. V., Karachevtsev V. A., Blagoi Yu. P. Mg2+ ion effect on the conformational equilibrium of polyUpolyApolyU and polyApolyU in aqueous solutions Int. J. Biol. Macromol 2003 31:223–233.
[15] Sorokin V. A., Valeev V. A., Gladchenko G. O., Degtyar M. V., Andrus E. A., Karachevtsev V. A., Blagoi Yu. P. Mg2+ and Ni2+ ion effect on stability and structure of triple polyIpolyApolyI helix Int. J. Biol. Macromol 2005 35:201–210.
[16] Sorokin V. A., Valeev V. A., Gladchenko G. O., Degtyar M. V., Andrus E. A., Blagoi Yu. P., Karachevtsev V. A. Effect of Mg2+ ions on the stability of polyA/2polyU three-stranded helices in aqueous solutions. Macromol. Biosci. 2002; 2(4):155–162.
[17] Sorokin V. A., Valeev V. A., Usenko E. L. Ni2+ ion effect on conformational equilibrium of polynucleotides: polyApolyU, polyA and polyU under conditions close to physiological ones. Biopolym. Cell 2008 24, N 2:158–170.
[18] Higasi K., Baba H., Rembaum A. Quantum organic chemistry New York: Intersci. publ. A division of John Wiley & sons, 1965 379 p.
[19] Blagoi Yu. P., Gladchenko G. O., Nafie L. A., Freedman T. B., Sorokin V. A., Valeev V. A., He Ya. Phase equilibrium in poly(rA)poly(rU) complexes with Cd2+ and Mg2+ ions, studied by ultraviolet, infrared, and vibrational circular dichroism spectroscopy Biopolymers 2005 78, N 5:275– 286.