Biopolym. Cell. 2009; 25(3):210-217.
Genomics, Transcriptomics and Proteomics
Crosstalk between transcription factors in regulation of the human glutathione S-transferase P1 gene expression in Me45 melanoma cells
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology
Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland
Abstract
Aim. The human GSTP1 is a major enzyme of phase II detoxification in the most cell types. Aberrant expression of GSTP1 is associated with carcinogenesis and development of multidrug resistance. The GSTP1 gene expression is regulated at multiple levels including transcriptional, post-transcriptional and post-translational. We concentrated our attention on the transcriptional level of regulation. Methods. Transient transfection of Me45 melanoma cells with constructs containing the luciferase gene under the control of complete and truncated GSTP1 promoter was utilized to identify a role of different promoter regions in regulation of the gene transcription in Me45 cells. To identify the transcription factors, interacting with the GSTP1 promoter sites, the competitive EMSA and super shift assay were applied. Results. GSTP1 transcription in Me45 cells is positively regulated by binding NF-B to the cognate site and ER in complex with unknown protein to the ARE site; the complex of ER with c-Fos negatively regulates the gene expression via CRE site. The interaction of c-Fos/ER with GSTP1 CRE site and indirect interaction of ER with GSTP1 ARE were identified. Conclusions. The positive regulation of the human GSTP1 gene in Me45 melanoma cells is exerted via NF-B and ARE sites and the negative one via CRE site of the promoter. ER is indirectly involved in the regulation of GSTP1 transcription. It is bound via c-Fos with CRE site and via unknown protein with ARE site.
Keywords: glutathione S-transferase, promoter, transcription factors, NF-B, estrogen receptor, melanoma, transcription regulation
Full text: (PDF, in English)
References
[1]
Hayes J. D., Flanagan J. U., Jowsey I. R. Glutathione transferases Annu. Rev. Pharmacol. Toxicol 2005 45:51–88.
[2]
Moscow J. A., Fairchild C. R., Madden M. J., Ransom D. T., Wieand H. S., O'Brien E. E., Poplack D. G., Cossman J., Myers C. E., Cowan K. H. Expression of anionic glutathioneS-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res. 1989; 49(6):1422–1428.
[3]
Oakley A. J., Lo B. M., Nuccetelli M., Mazzetti A. P., Parker M. W. The ligandin (non-substrate) binding site of human Pi class glutathione transferase is located in the electrophile binding site (H-site) J. Mol. Biol 1999 291, N 4:913–926.
[4]
Zhao X., Fan Y., Shen J., Wu Y., Yin Z. Human glutathione S-transferase P1 suppresses MEKK1-mediated apoptosis by regulating MEKK1 kinase activity in HEK293 cells. Mol. Cells. 2006; 21(3):395–400.
[5]
Paakki P., Kirkinen P., Helin H., Pelkonen O., Raunio H., Pasanen M. Antepartum glucocorticoid therapy suppresses human placental xenobiotic and steroid metabolizing enzymes Placenta 2000 21, N 2–3:241–246.
[6]
Turella P., Pedersen J. Z., Caccuri A. M., De M. F., Mastroberardino P., Lo B. M., Federici G., Ricci G. Glutathione transferase superfamily behaves like storage proteins for dinitrosyl-diglutathionyl-iron complex in heterogeneous systems J. Biol. Chem 2003 278, N 43:42294–42299.
[7]
Moffat G. J., McLaren A. W., Wolf C. R. Transcriptional and post-transcriptional mechanisms can regulate cell-specific expression of the human Pi-class glutathione S-transferase gene. Biochem. J. 1997; 324(pt 1):91–95.
[8]
Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei Nucl. Acids. Res 1983 11, N 5:1475–1489.
[9]
Cowell I. G., Dixon K. H., Pemble S. E., Ketterer B., Taylor J. B. The structure of the human glutathione S-transferase Pi gene. Biochem. J. 1988; 255(1):79–83.
[10]
Xia C. L., Cowell I. G., Dixon K. H., Pemble S. E., Ketterer B., Taylor J. B. Glutathione transferase pi its minimal promoter and downstream cis-acting element Biochem. Biophys. Res. Communs 1991 176, N 1:233–240.
[11]
Morceau F., Duvoix A., Delhalle S., Schnekenburger M., Dicato M., Diederich M. Regulation of glutathione S-transferase P1-1 gene expression by NF-kappaB in tumor necrosis factor alpha-treated K562 leukemia cells Biochem. Pharmacol 2004 67, N 7:1227–1238.
[12]
Schnekenburger M., Morceau F., Duvoix A., Delhalle S., Trentesaux C., Dicato M., Diederich M. Expression of glutathione S-transferase P1-1 in differentiating K562: role of GATA-1 Biochem. Biophys. Res. Communs 2003 311, N 4:815–821.
[13]
Moffat G. J., McLaren A. W., Wolf C. R. Sp1-mediated transcriptional activation of the human Pi class glutathione S-transferase promoter J. Biol. Chem 1996 271, N 2:1054– 1060.
[14]
Jhaveri M. S., Morrow C. S. Contribution of proximal promoter elements to the regulation of basal and differential glutathione S-transferase P1 gene expression in human breast cancer cells Biochim. Biophys. Acta 1998 1396, N 2:179–190.
[15]
Duvoix A., Schmitz M., Schnekenburger M., Dicato M., Morceau F., Galteau M. M., Diederich M. Transcriptional regulation of glutathione S-transferase P1-1 in human leukemia Biofactors 2003 17, N 1–4:131–138.
[16]
Nishinaka T., Ichijo Y., Ito M., Kimura M., Katsuyama M., Iwata K., Miura T., Terada T., Yabe-Nishimura C. Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element Toxicol. Lett 2007 170, N 3:238–247.
[17]
Montano M. M., Deng H., Liu M., Sun X., Singal R. Transcriptional regulation by the estrogen receptor of antioxidative stress enzymes and its functional implications Oncogene 2004 23, N 14:2442–2453.
[18]
Xia C., Hu J., Ketterer B., Taylor J. B. The organization of the human GSTP1-1 gene promoter and its response to retinoic acid and cellular redox status. Biochem. J. 1996; 313(pt 1):155–161.
[19]
Lo H. W., li-Osman F. Cyclic AMP mediated GSTP1 gene activation in tumor cells involves the interaction of activated CREB-1 with the GSTP1 CRE: a novel mechanism of cellular GSTP1 gene regulation J. Cell. Biochem 2002 87, N 1:103–116.
[20]
Manna P. R., Stocco D. M. Crosstalk of CREB and Fos/Jun on a single cis-element: transcriptional repression of the steroidogenic acute regulatory protein gene J. Mol. Endocrinol 2007 39, N 4:261–277.
[21]
Gottlicher M., Heck S., Herrlich P. Transcriptional crosstalk, the second mode of steroid hormone receptor action J. Mol. Med 1998 76, N 7:480–489.
[22]
Marino M., Galluzzo P., Ascenzi P. Estrogen signaling multiple pathways to impact gene transcription Curr. Genomics 2006 7, N 8:497–508.