Biopolym. Cell. 2009; 25(3):194-203.
Molecular and Cell Biotechnologies
Application of L-lactate-cytochrome c-oxidoreductase for development of amperometric biosensor for L-lactate determination
1, 2Goriushkina T. B., 1, 2Orlova A. P., 3Smutok O. V., 3, 4Gonchar M. V., 1Soldatkin A. P., 1Dzyadevych S. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Taras Shevchenko National University of Kyiv
    64, Volodymyrska Str., Kyiv, Ukraine, 01601
  3. Institute of Cell Biology, NAS of Ukraine
    14/16, Drahomanov Str., Lviv, Ukraine, 79005
  4. Zaklad Biotechnologii, Zamiejscowy Wydzial Biotechnologii, Uniwersytet Rzeszowski
    Kolbuszowa, Polska

Abstract

Aim. Development of amperometric biosensor based on L-lactate-cytochrome c-oxidoreductase (flavocytochrome b2, FC b2) for lactate determination. Methods. All experiments were performed using the amperometric method of detection. The methods of electrochemical polymerization and immobilization in glutaraldehyde vapors were used for FC b2 immobilization on the surface of electrodes. Results. The FC b2 preparation, which demonstrated the best operational characteristics after immobi- lization in poly (3,4-ethylen dioxythiophene), was selected. The selectivity, operational and storage stability, and pH-optimum for operation of the created biosensor were determined. The analysis of L-lactate in the model solutions and wine samples was carried out using the developed biosensor. Conclusion. The FC b2-based biosensor due to its high stability can be effectively used for lactate determination in blood and other liquids containing no ethanol. After the selectivity optimization, the devise can be also applied for wine analysis.
Keywords: amperometric biosensor, flavocytochrome b2, L-lactate

References

[1] Goriushkina T. B., Dzyadevych S. V. Grape wines: chemical composition and methods of determination. Biotekhnology 2008; 1(2):24–38.
[2] Goriushkina T. B., Shkotova L. V., Slast'ya E. A., Soldatkin A. P., Dzyadevych S. V. Optimization of methods of lactate determination in wine by amperometric enzyme biosensor. Sensor Electronics and Microsystem Technologies. 2008; 2:39–47.
[3] Goriushkina T. B., Dzyadevych S. V. Enzymatic biosensors for quantitative analysis of wine's components. Sensor Electronics and Microsystem Technologies. 2008; 1:49–67.
[4] Rahman M. M., Shiddiky M. J. A., Rahman M. A., Shim Y.-B. A lactate biosensor based on LDH/NADH immobilized on a conducting polymer/multiwall carbon nanotube composite film Anal. Biochem 2009 384:159–165.
[5] Mazzei F., BotrP F., Favero G. Peroxidase based biosensors for the selective determination of D, L-lactic acid and L-malic acid in wines. Microchem. J. 2007; 87:81–86.
[6] Esti M., Volpe G., Micheli L., Delibato E., Compagnone D., Moscone D., Palleschi G. Electrochemical biosensors for monitoring malolactic fermentation in red wine using two strains of Oenococcus oeni. Anal. Chim. Acta. 2004. 513, N 1: 357–364.
[7] Parra A., Casero E., Vazquez L., Pariente F., Lorenzo E. Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces. Anal. Chim. Acta 2006 555:308–315.
[8] Rhemrev-Boom M. M., Jonker M. A., Venema K., Jobst G., Tiessena R., Korf J. On-line continuous monitoring of glucose or lactate by ultraslow microdialysis combined with a flow-through nanoliter biosensor based on poly(m-phenylenediamine) ultra-thin polymer membrane as enzyme electrode Analyst 2001 126:1073–1079.
[9] Chaniotakis N. A. Enzyme stabilization strategies based on electrolytes and polyelectrolytes for biosensor applications Anal. Bioanal. Chem 2004 378 P. 89–95.
[10] Gibson T. D., Hulbert J. N., Woodward J. R. Preservation of shelf life of enzyme based analytical systems using a combination of sugars, sugar alcohols and cationic polymers or zinc ions Anal. Chim. Acta 1993 279:185–192.
[11] Azevedo A. M., Cabral J. M. S., Prazeres D. M. F., Gibson T. D., Fonseca L. P. Thermal and operational stabilities of Hansenula polymorpha alcohol oxidase J. Mol. Catalysis B: Enzymatic 2004 27:37–45.
[12] Kaushik A., Khan R., Solanki P. R., Pandey P., Alam J., Ahmad S., Malhotra B. D. Iron oxide nanoparticles–chitosan composite based glucose biosensor Biosensors and Bioelectronics 2008 24 P. 676–683.
[13] Smutok O., Gayda G., Gonchar M., Schuhmann W. A novel L-lactate-selective biosensor based on flavocytochrome b2 from methylotrophic yeast Hansenula polymorpha Biosensors and Bioelectronics 2005 20:1285–1290.
[14] Smutok O. V., Gayda G. Z., Shuman V., Gonchar M. V. Development of L-lactate-selective biosensor based on thermostable yeast L-lactate-cytochrome c-oxidoreductase Investigation on Sensor Systems and Technologies. Eds A. V. El'skaya, V. D. Pokhodenko) Kyiv: IMBG, 2006:51–57.
[15] Shleev S. V., Shumakovich G. P., Nikitina O. V., Morozova O. V., Pavlishko H. M., Gayda G. Z., Gonchar M. V. Purification and characterization of alcohol oxidase from a genetically constructed over-producing strain of the methylotrophic yeast Hansenula polymorpha. Biochemistry. 2006; 71,(3):245–250.
[16] Dzyadevych S. V., Soldatkin A. P. Solid-state electrochemical enzyme biosensors Kyiv: IMBG, 2008 222 p.
[17] Shkotova L. V., Goriushkina T. B., Slast'ya E. A., Soldatkin A. P., Tranh-Minh C., Chovelon J.-M., Dzyadevych S. V. Amperometric biosensor for lactate analysis in wines and must during wine fermentation. Ukr Biokhim Zh. 2005; 77(5):123–130.