Biopolym. Cell. 2009; 25(2):126-132.
Molecular Biophysics
Investigation of complexation of ethidium bromide with DNA by the method of Raman spectroscopy
1Blyzniuk Iu. N., 1Bolbukh T. V., 1Kruglova O. B., 1Semenov M. A., 1Maleev V. Ya.
  1. A. Usikov Institute of Radio Physics and Electronics, NAS of Ukraine
    12, Proskura Str., Kharkov, Ukraine, 61085

Abstract

The investigation of complexation features of ethidium bromide (EB) with calf thymus DNA at the high and low ratios of biopolymer/ligand molar concentrations (P/D) was carried out using Raman spectroscopy and VIS-spectrophotometry. It was shown that EB binds to DNA with formation of two types of complexes: intercalation and exterior binding. The analysis of Raman spectra revealed that the amino groups of EB form the hydrogen bonds with acceptor atom groups of DNA in both types of complexes. A low extent of filling DNA structure by the ligand (P/D = 20) does not change the DNA B-form, while a high extent (P/D = 3) results in the conformation B-A transition.
Keywords: ethidium bromide, DNA, complex, Raman spectroscopy, spectrophotometr

References

[1] Karapetian A. T., Mehrabian N. M., Terzikian G. A., Vardevanian P. O., Antonian A. P., Borisova O. F., FrankKamenetskii M. D. Theoretical treatment of melting complexes of DNA with ligands having several types of binding states on helical and single-stranded DNA J. Biomol. Struct. and Dyn 1996 14, N 2:275–283.
[2] Minasyan S. H., Tavadyan L. A., Antonyan A. P., Davtyan H. G., Parsadanyan M. A., Vardevanyan P. O. Differential pulse voltammetric studies of ethidium bromide binding to DNA. Bioelectrochemistry 2006 68, N 1:48–55.
[3] Semenov M. A., Bolbukh T. V. The complexing of ethidium bromide and DNA in moist films as revealed by IR-spectroscopy Biopolym. Cell 1987 3, N 5:234–240.
[4] Yuzaki K., Hamaguchi H. Intercalation-induced structural change of DNA as studied by 1064 nm near-infrared multichannel Raman spectroscopy J. Raman Spectrosc 2004 35, N 12:1013–1015.
[5] Bresloff J. L., Crothers D. M. DNA-ethidium reaction kinetics: demonstration of direct ligand transfer between DNA binding sites J. Mol. Biol 1975 95, N 1:103–123.
[6] Erfurth S. C., Kiser E. J., Peticolas W. L. Determination of the backbone structure of nucleic acids and nucleic acid oligomers by laser Raman scattering Proc. Nat. Acad. Sci. USA 1972 69, N 4:938–941.
[7] Semenov M. A., Gasan A. I., Bolbukh T. V., Maleev V. Ya. Hydration and the structural transitions of DNA from Micrococcus lysodeikticus in films. Biophysics. 1996; 41(5):1007–1015.
[8] Semenov M. A., Gasan A. I., Bolbukh T. V., Maleev V. Ya. Influence of the water on the structural transitions and stabilization of DNA from Clostridium perfringens. Biophysics. 1997; 42(3):591–598.
[9] Grasselli J. G., Snavely M. K., Bulkin B. J. Chemical applications of Raman spectroscopy M.: Mir, 1984 216 p.
[10] Porumb H. The solution spectroscopy of drugs and the drugnucleic acid interactions Progr. Biophys. Mol. Biol 1978 34, N 3:175–195.
[11] Parker F. S. Application of Infrared, Raman and Resonance Raman spectroscopy in biochemistry New York: Plenum press, 1983 550 p.
[12] Breuzard G., Millot J. M., Riou J. F., Manfait M. Selective interactions of ethidiums with G-quadruplex DNA revealed by surface-enhanced Raman scattering Anal. Chem 2003 75, N 10:4305–4311.
[13] Benevides J. M., Thomas G. J., Jr. Local conformational changes induced in B-DNA by ethidium intercalation Biochemistry 2005 44, N 8:2993–2999.
[14] Tsuboi M., Benevides J. M., Thomas G. J., Jr. The complex of ethidium bromide with genomic DNA: structure analysis by polarized Raman spectroscopy Biophys. J 2007 92, N 3:928–934.
[15] Veselkov A. N., Evstigneev M. P., Hernandez S. A., Rogova O. V., Veselkov D. A., Davies D. B. 1H NMR study of heteroassociation of ethidium homodimer and propidium iodide in water J. Struct. Chem 2004 45, N 5:793–799.
[16] Yan Q., Priebe W., Chaires J. B., Czernuszewicz R. S. Interaction of doxorubicin and its derivatives with DNA: elucidation by resonance Raman and surface-enhanced resonance Raman spectroscopy. Biospectroscopy. 1997; 3(4):307–316.
[17] Miroshnychenko K. V., Shestopalova A. V. The effect of drugDNA interaction on intercalation site formation Molecular self-organization in micro-, nano, and macrodimensions: from molecules to water, to nanoparticles, DNA and proteins: Abstrs of NATO Adv. Res. Workshop Kyiv, 2008:72–73.
[18] Jain S. C., Sobell H. M. Visualization of drug-nucleic acid interactions at atomic resolution. VIII. Structures of two ethidium/dinucleoside monophosphate crystalline complexes containing ethidium: cytidylyl(3'-5')guanosine J. Biomol. Struct. and Dyn 1984 1, N 5:1179–1194.
[19] Karapetian A. T., Permogorov V. I., Frank-Kamenetskii M. D., Lasurkin Yu. S. Thermodynamic investigation of the DNA complexes with dyes. Mol. Biol. (Mosk)–1972; 6(6):867–873.
[20] Martin J. C., Wartell R. M. Changes in Raman vibrational bands of calf thymus DNA during the B-to-A transition Biopolymers 1982 21, N 3:499–512.
[21] Prescott B., Steinmetz W., Thomas G. J., Jr. Characterization of DNA structures by laser Raman spectroscopy Biopolymers 1984 23, N 2:235–256.
[22] Thomas G. J., Jr., Benevides J. M., Overman S. A., Ueda T., Ushizawa K., Saitoh M., Tsuboi M. Polarized Raman spectra of oriented fibers of A DNA and B DNA: Anisotropic and isotropic local Raman tensors of base and backbone vibrations Biophys. J 1995 68, N 3:1073–1088.