Biopolym. Cell. 2009; 25(2):101-109.
Structure and Function of Biopolymers
Topological and power characteristics of supercoiled DNA
- Belarusian State Technological University
13a, Sverdlova Str., Minsk, Belarus, 220006
Abstract
The methods of elasticity theory were used to simulate topological properties of supercoiled DNA. A mechanism of realization of topological restrictions for supercoiled DNA was established. A possibility of transition from right hand to left hand DNA in strand molecules was theoretically proved. Influence of a corner strand on topological characteristics of a molecule was investigated. The parameters of force contact interaction in branches strand were defined.
Keywords: topologic, corner strand, right helical–left helical transition, force characteristics
Full text: (PDF, in English) (PDF, in Russian)
References
[1]
Shirko A. V., Kamluk A. N., Nemtsov V. B. Research of the configuration of the DNA macromolecule ring by the methods of the elasticity theory. Reports of National Academy of Sciences of Belarus. 2007; 51(1):34–39.
[2]
Shirko A. V. Statistiko-mechanicheskoe opisanie nelineynoy uprugosti molekuly DNK: Avtoref. dis. … kand. fiz.-mat. nauk. In-t fiziki im. B. I. Stepanova NAN Belarusi Minsk, 2008 22 s.
[3]
Furrer P. B., Manning R. S., Maddocks J. H. DNA rings with multiple energy minima Biophys. J 2000 79, N 1 P. 116–136.
[4]
Boles T., White J., Cozzarelli N. Structure of plectonomically supercoiled DNA. J. Mol. Biol 1990 213, N 4:931–951.
[5]
Adrian M., ten Heggeler-Bordier B., Wahli W., Stasiak A. Z., Stasiak A., Dubochet J. Direct visualization of supercoiled DNA molecules in solution EMBO J 1990 9, N 13 P. 4551–4554.
[6]
Limanskaya L. A., Limanskii A. P. S-DNA is oversupercoiled DNA with 1.94–2.19 rise per base pair Mol Biol (Mosk). 2006 40, N 1:122–136.
[7]
Bednar J. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix J. Mol. Biol 1994 235, N 3:825–847.
[8]
Yang Y., Tobias I., Olson W. K. Finite element analysis of DNA supercoiling J. Chem. Phys 1993 98, N 2 P. 1673–1686.
[9]
Tobias I., Swigon D., Coleman B. D. Elastic stability of DNA configurations. I. General theory Phys. Rev. E 2000 61, N 1:747–758.
[10]
Coleman B. D., Swigon D., Tobias I. Elastic stability of DNA configurations. II. Supercoiled plasmids with self-contact Phys. Rev. E 2000 61, N 1:759–770.
[11]
Allemand J. F., Bensimon D., Lavery R., Croquette V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases Proc. Nat. Acad. Sci. USA 1998 95, N 24:14152–14157.
[12]
Strick T. R., Croquette V., Bensimon D. Homologous pairing in stretched supercoiled DNA Proc. Nat. Acad. Sci. USA 1998 95, N 18:10579–10583.
[13]
Lionnet T., Joubaud S., Lavery R., Bensimon D., Croquette V. Wringing out DNA Phys. Rev. Lett 2006 96, N 17 P. 178102-1–4.
[14]
Leger J. F., Romano G., Sarkar A. Structural transitions of a twisted and stretched DNA molecule Phys. Rev. Lett 1999 83, N 5:1066–1069.
[15]
Frank-Kamenetckii M. D., Vologodskii A. V. Topological aspects of physics of polymers: the theory and its biophysical appendices. Physics Uspekhi. 1981; 134(8):641–673.
[16]
Kamlyuk A. N., Shirko A. V., Nemtsov V. B. Geometric features of the DNA double helix in the supercoiled state. Biophysics. 2007;52(1):19-23.
[17]
Nemtsov V. B., Kamluk A. N., Shirko A. V. Contact interactions of branches of superspiral DNA molecules Trudy BSTU. Series VI. Physico-mathematical sciences and informatics 2004 Issue XII:62–66.
[18]
Moroz J. D. Nelson P. Entropic elasticity model of twist-storing polymers Macromolecules 1998; 31, N 18:6333–6347.
[19]
Bouchiat C., Mezard M. Elasticity model of a supercoiled DNA molecule Phys. Rev. Lett 1998 80, N 7:1556–1559.
[20]
Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.