Biopolym. Cell. 2009; 25(2):95-100.
Structure and Function of Biopolymers
Creation of cellular models for the analysis of sodium-dependent phosphate transporter NaPi2b, a potential marker for ovarian cancer
1Gryshkova V. S., 1Lituyev D. S., 1Filonenko V. V., 1Kiyamova R. G.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The aim of present study was to develop a model for a functional analysis of a recently identified marker of the ovarian cancer – sodium-dependent phosphate transporter NaPi2b. For this purpose, we have created HEK293 stable cell lines expressing wild type or mutant forms of NaPi2b (T330V substitution in a large extracellular loop and a 6 amino acid residues deletion in the C-terminal cytoplasmic tail), revealed in the ovarian cancer cell lines. The expression of wild type and mutant forms NaPi2b in the stable cell lines created was confirmed by Western-blot analysis with monoclonal antibodies against NaPi2b. The cellular models described here will be useful for studying the function of sodium-dependent phosphate transporter NaPi2b in health and disease.
Keywords: sodium-dependent phosphate transporter NaPi2b, mutation, anti-NaPi2b MAb

References

[1] Rangel L. B., Sherman-Baust C. A., Wernyj R. P., Schwartz D. R., Cho K. R., Morin P. J. Characterization of novel human ovarian cancer-specific transcripts (HOSTs) identified by serial analysis of gene expression Oncogene 2003 22, N 46:7225–7232.
[2] Yin B. W. T., Kiyamova R., Chua R., Caballero O. L., Gout I., Gryshkova V., Bhaskaran N., Souchelnytskyi S., Hellman U., Filonenko V., Jungbluth A. A., Odunsi K., Lloyd K. O., Old L. J., Ritter G. Monoclonal antibody MX35 detects the membrane transporter NaPi2b (SLC34A2) in human carcinomas; a new target for cancer immunotherapy Cancer Immun. [serial online] 2008 8, N 3 URL: http://www.cancerimmunity.org/v8p3/080103.htm.
[3] Mattes M. J., Look K., Furukawa K., Pierce V. K., Old L. J., Lewis J. L., Lloyd K. O. Mouse monoclonal antibodies to human epithelial differentiation antigens expressed on the surface of ovarian carcinoma ascites cells. Cancer Res. 1987; 47(24, pt 1):6741–6750.
[4] Rubin S. C., Kostakoglu L., Divgi C., Federici M. G., Finstad C. L., Lloyd K. O., Larson S. M., Hoskins W. J. Biodistribution and intraoperative evaluation of radiolabeled monoclonal antibody MX35 in patients with epithelial ovarian cancer Gynecol. Oncol 1993 51, N 1:61–66.
[5] Feild J. A., Zhang L., Brun K. A., Brooks D. P., Edwards R. M. Cloning and functional characterization of a sodiumdependent phosphate transporter expressed in human lung and small intestine Biochem. and Biophys. Res. Communs 1999 258, N 3:578–582.
[6] Traebert M., Hattenhauer O., Murer H., Kaissling B., Biber J. Expression of type II sodium-phosphate cotransporter in murine type II alveolar epithelial cells. Amer. J. Physiol. 1999; 277(5, pt 1):L868–L873.
[7] Frei P., Gao B., Hagenbuch B., Mate A., Biber J., Murer H., Meier P. J., Stieger B. Identification and localization of sodium-phosphate cotransporters in hepatocytes and cholangiocytes of rat liver Amer. J. Physiol. Gastrointest. Liver Physiol 2005 288, N 4:G771–G778.
[8] Huber K., Muscher A., Breves G. Sodium-dependent phosphate transport across the apical membrane of alveolar epithelium in caprine mammary gland Comparative Biochem. and Physiol 2007 146:215–222.
[9] Homann V., Rosin-Steiner S., Stratmann T., Arnold T., Gaengler P., Kinne R. K. Sodium-phosphate cotransporter in human salivary glands: molecular evidence for the involvement of NPT2b in acinar phosphate secretion and ductal phosphate reabsorption Arch. Oral Biol 2005 50, N 9:759–768.
[10] Murer H., Forster I., Biber J. The sodium phosphate cotransporter family SLC34 Pflugers Arch. 2004 447, N 10:763–767.
[11] Xu Y., Yeung C.-H., Setiawan I., Avram C., Biber J., Wagenfeld A., Lang F., Cooper T. G. Sodium-inorganic phosphate cotransporter NaPi2b in the epididymis and its potential role in male fertility studied in a transgenic mouse model Biol. Reprod 2003 69, N 4:1135–1141.
[12] Lundquist P., Murer H., Biber J. Type II Na+-P cotransporters in osteoblast mineral formation; regulation by inorganic phosphate Cell. Physiol. Biochem 2007 19, N 1–4 P. 43–56.
[13] Hilfiker H., Hattenhauer O., Traebert M., Forster I., Murer H., Biber J. Characterization of a new murine type II sodium-phosphate cotransporter expressed in mammalian small intestine Proc. Natl. Acad. Sci. USA 1998 95, N 24 P. 14564–14569.
[14] Kiyamova R., Gryshkova V., Ovcharenko G., Lituyev D., Malyuchik S., Usenko V., Khozhayenko Yu., Gurtovyy V., Yin B., Ritter G., Old L., Filonenko V., Gout I. Development of monoclonal antibodies specific for the human sodiumdependent phosphate cotransporter NaPi2b Hybridoma 2008 27, N 4 P. 277–284.
[15] Corut A., Senyigit A., Ugur S. A., Altin S., Ozcelik U., Calisir H., Yildirim Z., Gocmen A., Tolun A. Mutations in SLC34A2 cause pulmonary alveolar microlithiasis and are possibly associated with testicular microlithiasis Amer. J. Hum. Genet 2006 79, N 4:650–656.
[16] Murer H., Hernando N., Forster I., Biber J. Molecular mechanisms in proximal tubular and small intestinal phosphate Mol. Membrane Biol 2001 18, N 1:3–11.
[17] Miyamoto K., Ito M., Kuwahata M., Kato S., Segawa H. Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23 Ther. Apher. Dial 2005 9, N 4:331–335.
[18] Xu H., Collins J., Bai L., Kiela P., Ghishan F. Regulation of the human sodium-phosphate cotransporter NaPi2b gene promoter by epidermal growth factor. Am. J. Physiol. 2001; 280(3):C628–C636.
[19] Arima K., Hines E.R., Kiela P.R., Drees J.B., Collins J.F., Ghishan F.K. Glucocorticoid regulation and glycosylation of mouse intestinal type llb Na-Pi cotransporter during ontogeny. Amer. J. Physiol. 2002; 283(2):G426–G434.
[20] Katai K., Miyamoto K., Kishida S., Segawa H., Nii T., Tanaka H., Tani Y., Arai H., Tatsumi S., Morita K., Taketani Y., Takeda E. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3 Biochem. J 1999 343, pt 3:705–712.
[21] Xu H., Uno J. K., Inouye M., Xu L., Drees J. B., Collins J. F., Ghishan F. K. Regulation of intestinal NaPi2b cotransporter gene expression by estrogen Am. J. Physiol. Gastrointest. Liver Physiol. 2003; 285(6):G1317–G1324.
[22] Lanaspa M. A., Giral H., Breusegem S. Y., Halaihel N., Baile G., Catalan J., Carrodeguas J. A., Barry N. P., Levi M., Sorribas V. Interaction of MAP17 with NHERF3/4 induces translocation of the renal Na/Pi IIa transporter to the transGolgi Am. J. Physiol. Renal Physiol 2007 292, N 1 P. 230–242.
[23] Ball E. V., Stenson P. D., Abeysinghe S. S. Microdeletions and microinsertions causing human genetic disease common mechanisms of mutagenesis and the role of local DNA sequence complexity Hum. Mutat 2005 26, N 3:205– 213.