Biopolym. Cell. 2009; 25(1):56-61.
Molecular Biomedicine
Photoactive immunoconjugate of hematoporphyrin with antibodies to vascular endothelial growth factor: preparation, physicochemical and biological properties
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine
45, Vasilkivska Str., Kyiv, Ukraine, 01022
Abstract
Preparation of photoimmunoconjugates on the basis of hematoporphyrin and antibodies to the vascular endothelial growth factor (VEGF) is described. The obtained conjugate preserved physicochemical and biological properties of both protein component and porphyrin part – hematoporphyrin. It was shown that accumulation of the photoimmunoconjugate with VEGF antibodies in chicken embryo membranes was 2,5 times larger at the period of the neovascularization than at the stabilization.
Keywords: photodynamic therapy, angiogenesis, conjugates, hematoporphyrin, VEGF
Full text: (PDF, in English) (PDF, in Ukrainian)
References
[1]
Mew D., Wat C. K., Towers G. H., Levy J. C. Photoimmunotherapy treatment of animal tumors with tumo-specific monoclonal antibody – hematoporphyrin conjugates J. Jmmunol 1983 130, N 3:1473–1477.
[2]
Jiang F. N., Richter A. M., Jain A. K., Levy J. G., Smith C. Biodistribution of a benzoporphyrin derivative-monoclonal antibody conjugate in A 549 – tumor-bearing nude mice. Biotechnol Ther. 1993;4(1-2):43-61.
[3]
Carcenac M., Larrogue C., Langlois R., van Lier J., Artus J., Pelegrin A. Preparation, phototoxicity and biodistribution studies of anti-carcinoembryonic antigen monoclonal antibody – phthalocyanine conjugates J. Photochem. Photobiol 1999 70, N 6:930-936.
[4]
Vrouenraets M. B., Visser G. W., Stigter M., Oppelaar H., Snow G. B, van Dongen G. A. Comparison of aluminium (III) phthalocyanine tetrasulfonateand meta-tetrahydroxyphenylchlorin-monoclonal antibody conjugates for their efficacy in photodynamic therapy in vitro Int. J. Cancer 2002 98, N 5:793–798.
[5]
Fabbrini M., Trachsel E., Soldani P., Bindi S., Alessi P., Bracci L., Kosmehl H., Zardi L., Neri D., Neri P. Selective occlusion of tumor blood vessels by targeted delivery of an antibody-photosensitizer conjugate Int. J. Cancer 2006 118, N 7:1805–1813.
[6]
Sharman W. M., van Lier J. E., Allen C. M. Targeted photodynamic therapy via receptor mediated delivery systems Adv. Drug Deliv. Rev 2004 56, N 1:53–76.
[7]
Governatore M., Hamblin M. R., Shea C. R., Rizvi I., Molpus K. G., Tanabe K. K., Hasan T. Experimental photoimmunotherapy of hepatic metastases of colorectal cancer with a 17.1 A chlorin e6 immunoconjugate Cancer Res 2000 60 P. 4200–4205.
[8]
Linares R., RachecoY. R., Good T. A. Efficacy of different targeting agents in the photolysis of interleukine-2 receptor bearing cells J. Photochem. Photobiol 2004 77, N 1–3:17–26.
[9]
Giysene A., Missiaen L., Wilfried M., Witte P. Epidermal growth factor-mediated targeting of chlorine e6 selectively potentiates its photodynamic activity Cancer Res 2000 60, N 8:2197–2202.
[10]
Savellano M., Pogue B., Hoopes P., Vitetta E., Paulsen K. Multiepitope HER2 targeting enhances photoimmunotherapy of HER2-overexpessing cancer cells with pyropheophorbide – immunoconjigates Cancer Res 2005 65, N 14:6371–6379.
[11]
Soukos N., Hamblin M., Keel S., Fabian R., Deutsch T., Hasan T. Epidermal growth factor receptor-targeting immunophotodiagnosis and photoimmunotheraphy of oral precancer in vivo Cancer Res 2001 61, N 11:4490–4496.
[12]
Gijsens A., De Witte P. Targeting of chlorine E6 by EGF increasing its photodynamic activity in selective ways. Verh K Acad Geneeskd Belg. 2000;62(4):329-52.
[13]
Gupta S., Mishra A. K., Muralidhar K., Jain V. Improved targeting of photosensitizers by intratumoral administration of immunoconjugates. Technol Cancer Res Treat. 2004;3(3):295-301.
[14]
Chen B., Pogue B. W., Luna J. M., Hardman R. L., Hoopes P. J., Hasan T. Tumor vascular permeabilization by vasculartargeting photosensitization: effects, mechanism, and therapeutic implications Clin. Cancer Res 2006 12, N 3:917–923.
[15]
Immunological methods. Ed. G Frimmel M.: Meditsina, 1987 518 p.
[16]
Lisnyak I. O. Neovascularisation and tumor growth: DrSci Thesis Kyiv, 2004 38 p.
[17]
Roberts W., Hasan T. Role of neovascularization and vascular permeability on the tumor retention of photodynamic agents. Cancer Res. 1992;52(4):924-30.