Biopolym. Cell. 2009; 25(1):39-42.
Structure and Function of Biopolymers
Study on the putative active site of Enterococcus faecalis prolyl- tRNA synthetase editing domain by methods of site-directed mutagenesis
1Boyarshin K. S., 1Kriklivyi I. A., 1Rayevsky A. V., 1Himin A. A., 1Yaremchuk A. D., 1Tukalo M. A.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The maintenance of amino acid specificity by aminoacyl-tRNA synthetases can require the hydrolysis of missynthesized products that is known as amino acid editing. Bacterial prolyl-tRNA synthetase includes a special editing domain, that deacylates alanyl-tRNAPro, and so exhibits post-transfer editing activity. The mechanism of tRNA-dependent editing by prolyl-tRNA synthetase has to be defined. The present work aim is to study the structure of the active site of enterobacteria E. faecalis prolyl-tRNA synthetase editing domain. The amino acids positions E218, T257, K279, G331, S332, G334, and H366 have been chosen for the site-directed mutagenesis (alanine scanning). An editing activity of the mutants was compared with the wild type prolyl-tRNA synthetase. Three amino acid residues, important for the editing activity, K279, G331 and H366, were revealed. This data are consistent with the existing suppositions about the structure of bacterial prolyl-tRNA synthetase deacylating active site.
Keywords: prolyl-tRNA synthetase, editing, tRNA, site-directed mutagenesis

References

[1] Jakubowski H., Goldman E. Editing of errors in selection of amino acids for protein synthesis. Microbiol. Rev. 1992; 56(3):412–429.
[2] Lincecum T. L., Tukalo M., Yaremchuk A., Mursinna R. S., Williams A. M., Sproat B. S., Van Den Eynde W., Link A., Van Calenbergh S., Grotli M., Martinis S. A., Cusack S. Structural and mechanistic basis of preand posttransfer editing by leucyl-tRNA synthetase Mol. Cell 2003 11, N 4 P. 951–963.
[3] Fukunaga R., Yokoyama S. Structural basis for non-cognate amino acid discrimination by the valyl-tRNA synthetase editing domain J. Biol. Chem 2005 280, N 33:29937–29945.
[4] Fukunaga R., Yokoyama S. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase J. Mol. Biol 2006 359, N 4:901–912.
[5] Sasaki H. M., Sekine S., Sengoku T., Fukunaga R., Hattori M., Utsunomiya Y., Kuroishi C., Kuramitsu S., Shirouzu M., Yokoyama S. Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyltRNA synthetase Proc. Nat. Acad. Sci. USA 2006 103, N 40:14744–14749.
[6] Waas W. F., Schimmel P. Evidence that tRNA synthetasedirected proton transfer stops mistranslation Biochemistry 2007 46, N 43:12062–12070.
[7] Beuning P. J., Musier-Forsyth K. Hydrolytic editing by a class II aminoacyl-tRNA synthetase Proc. Nat. Acad. Sci. USA 2000 97, N 16:8916–8920.
[8] Wong F. C., Beuning J., Silvers C., Musier-Forsyth K. An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing J. Biol. Chem 2003 278, N 52:52857–52864.
[9] Hati S., Ziervogel B., SternJohn J., Wong F. C., Nagan M. C., Rosen A. E., Siliciano P. G., Chihade J. W., Musier-Forsyth K. Pre-transfer editing by class II prolyl-tRNA synthetase: role of aminoacylation active site in «selective release» of noncognate amino acids J. Biol. Chem 2006 281, N 38 P. 27862–27872.
[10] Wong F. C., Beuning P. J., Nagan M., Shiba K., MusierForsyth K. Functional role of the proline-tRNA synthetase insertion domain in amino acid editing Biochemistry 2002 41, N 22:7108–7115.
[11] Crepin T., Yaremchuk A., Tukalo M., Cusack S. Structures of two bacterial prolyl-tRNA synthetases with and without a cis-editing domain Structure 2006 14:1511–1525.
[12] Boyarshin K. S., Kriklivyi I. A., Tukalo M. A. tRNA-dependent editing of errors by prolyl-tRNA synthetase from bacteria Enterococcus faecalis. Ukr Biokhim Zh. 2008; 80(6):52-59.
[13] QuikChange® XL Site-Directed Mutagenesis Kit, instruction manual, catalog #200516 La Jolla, 2005:1–15.