Biopolym. Cell. 2008; 24(6):503-507.
Bioinformatic search for potential phosphorylation sites of melusin – integrin β1-binding protein
1Kroupskaya I. V., 1Kapustian L. M., 1Sidorik L. L.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680


Phosphorylation is one of the most frequently occurring posttranslational modifications in proteins. It plays an essential role in transferring outside signals into a cell and regulates different cellular processes such as growth, metabolism, proliferation, motility and differentiation. Melusin is a stress response protein which strictly reacts to the threshold levels of mechanic stress and activates cardiomyocytes signaling pathways. The search for potential sites of melusin phosphorylation was performed using bioinformatic analysis of primary protein sequences. The comparative bioinformatic analysis of possible phosphorylation sites, evolutionary and structural motifs has identified Ser326, Ser329 and Ser334 as the most likely sites for phosphorylation of melusin by protein kinase CK2 in cardiamyocytes.
Keywords: melusin, C-domain, secondary structure, 3D-structure, cell signaling pathways, prediction phospthorylation sites


[1] Brancaccio M., Guazzone S., Menini N., Sibona E., Hirsch E., De Andrea M., Rocchi M., Altruda F., Tarone G., Silengo L. Melusin is a new muscle specific interactor for beta(1) integrin cytoplasmic domain J. Biol. Chem 1999 274:29282–29288.
[2] Michowski W., Lee Y-T., Chazin W. J., Kuznicki J. Melusin binds calcyclin (S100A6) protein in a Ca2+-dependent fashion. Eur. J. Biochem. 2003; 1, Suppl:3.7–09.
[3] Brancaccio M., Fratta L.,Notte A., Hirsch E., Poulet R., Guazzone S., De Acetis M., Vecchione C., Marino G., Altruda F., Silengo L., Tarone G., Lembo G. Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload Nat. Med 2003 9, N 1:68–75.
[4] Brancaccio M., Hirsch E., Notte A., Selvetella G., Lembo G., Tarone G. Integrin signalling: the tug-ofwar in heart gypertrophy Cardiovasc. Res 2006 70, N 3:422–433.
[5] Hannigan G. E., Coles J. C., Dedhar S. Integrin-linked kinase at the heart of cardiac contractility, repair and disease Circ. Res 2007 100:1408–1414.
[6] De Acetis M., Notte A., Accornero F., Selvetella G., Brancaccio M., Vecchione C., Sbroggio M., Collino F., Pacchioni B., Lanfranchi G., Aretini A., Ferretti R., Maffei A., Altruda F., Silengo L., Tarone G., Lembo G. Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload Circ. Res 2005 96, N 10:1087–1094.
[7] Pan J., Fukuda K., Kodama H., Sano M., Takahashi T., Makino S., Kato T., Manabe T., Hori S., Ogawa S. Involvement of gp130-mediated signaling in pressure overload-induced activation of the JAK/STAT pathway in rodent heart Heart Vessels 1998 13, N 4:199–208.
[8] Seko Y., Takahashi N., Sabe H., Tobe K., Kadowaki T., Nagai R. Hypoxia induces activation and subcellular translocation of focal adhesion kinase (p125(FAK)) in cultured rat cardiac myocytes Biochem. and Biophys. Res. Communs 1999 262, N 1:290–296.
[9] Thomson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice Nucl. Acids Res 1994 22:4673–4680.
[10] Obenauer J. C., Cantley L. C., Yaffe M. B. ScanSite 2.0: Proteome-wide prediction of cell signalling interactions using short sequence motif Nucl. Acids Res 2003 31:3635–3641.
[11] Blom N., Gammeltoft S., Brunak S. Sequence and structurebased prediction of eukaryotic protein phosphorylation sites J. Mol. Biol 1999 294:1351–1362.
[12] Huang H. D., Lee T. Y., Tseng, S. W., Horng J. T. Kinase Phose 2.0: a web tool for identifying protein kinase-specific phosphorylation sites Nucl. Acids Res 2005 33:W226–229.
[13] Garnier J., Gibrat J.-F., Robson B. GOR secondary structure prediction method version IV Meth. Enzymol 1996 266:540–553.
[14] Rost B., Sander C., Schneider R. PHD – an automatic mail server for protein secondary structure prediction Comput. Appl. Biosci 1994 10:53–60.
[15] Nameki N., Saito K., Koshiba S., Kigawa T., Yokoyama S. Solution structure of the CHORD domain of human CHORD-containing protein 1 RIKEN. Structural Genomics/Proteomics Initiative (RSGI) Release, 200804-08.
[16] Offman M. N., Fitzjohn P. W., Bates P. A. Developing a move-set for protein model refinement Bioinformatics 2006 22, N 15:1838–1845.
[17] Guex N., Peitsch M. C. SWISS-MODEL and the SwissPdbViewer and the Swiss-PdbViewer: An environment for comparative protein modeling Electrophoresis 1997 18:2714–2723.
[18] Kim S. O., Hasham M. I., Katz S., Pelech S. L. Insulinregulated protein kinases during postnatal development of rat heart J. Cell Biochem 1998 71, N 3:328–339.
[19] Kuznetsov M., Janakiraman R., Troppmair M. J. Regulating cell survival by controlling cellular energy production: novel functions for ancient signaling pathways? FEBS Lett 2004 577, N 1–2.0:1–4.
[20] Scott B. T., Simmerman H. K., Collins J. H., Nadal-Ginard B., Jones L. R. Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning J. Biol. Chem 1988 263, N 18:8958–8964.
[21] Cala S. E., Jones L. R. Phosphorylation of cardiac and skeletal muscle calsequestrin isoforms by Casein Kinase II. J. Biol. Chem. 1991; 266(1):391–398.
[22] Gorza L., del Monte F. Protein unfolding in cardiomyopathies Heart Fail Clin 2005 1, N 2:237–250.
[23] Nowotny M., Spiechowicz M., Jastrzebska B., Filipek A., Kitagawa K., Kuznicki J. Calcium-regulated interaction of Sgt1 with S100A6 (calcyclin) and other S100 proteins J. Biol. Chem 2003 278, N 29:26923–26928.