Biopolym. Cell. 2008; 24(4):323-332.
Molecular Biomedicine
Identification of chromosome 3 epigenetic and genetic abnormalities and gene expression changes in ovarian cancer
1Gordiyuk V. V., 1Gerashchenko G. V., 1Skrypkina I. Ya., 2Symonchuk O. V., 3Pavlova T. V., 1Ugryn D. D., 4Manzhura E. P., 5Vakulenko G. O., 6Zabarovsky E. R., 1Rynditch A. V., 1, 6Kashuba V. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. P. L. Shupik National medical academy of post-graduate education
    9, Dorohozhytska Str., Kyiv, Ukraine, 04112
  3. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
    32, Vavilova Str., Moscow, Russian Federation, 119991
  4. Kiev oncological hospital
    67, Verhovynna Str., Kyiv, Ukraine, 03115
  5. Bogomolets National Medical University
    Blvd. Shevchenko, 13, Kyiv, Ukraine, 01601
  6. Department of Microbiology, Tumor and Cell Biology,
    Karolinska Institute
    Nobels vag 5 171 65 Solna, Sweden

Abstract

DNA-microarray technology comprising NotI-linking clones has been used to check ovarian cancer cells for genetic and epigenetic changes. Analysis of samples from 22 patients revealed methylations, deletions and amplifications in 92 out of 181 NotI clones. For 32 gene loci these changes have been shown in more than 30 % of tumor samples that specifies a high probability of these genes involvement in the ovarian cancer development. For two genes, GORASP1 and GNAI2, the decrease in their expression has been confirmed by Northern blot analysis. Aberrations of 16 genes and loci unknown previously to be involved in the development of ovarian cancer have been detected.
Keywords: NotI-microarrays, human chromosome 3, DNA methylation, gene expression, ovarian cancer

References

[1] Kokhanevich Ye. V., Vakulenko G. A., Klevetenko M. P., Simonchuk Ye. V., Sudoma I. A., Sumenko V. V. Malignant tumors of the ovary: diagnostic problem. Zdorov'ye zhenshchiny. 2004; 2(18):202–215.
[2] Li J, Protopopov A, Wang F, Senchenko V, Petushkov V, Vorontsova O, Petrenko L, Zabarovska V, Muravenko O, Braga E, Kisselev L, Lerman MI, Kashuba V, Klein G, Ernberg I, Wahlestedt C, Zabarovsky ER. NotI subtraction and NotI-specific microarrays to detect copy number and methylation changes in whole genomes. Proc Natl Acad Sci U S A. 2002;99(16):10724-9.
[3] Dreijerink K, Braga E, Kuzmin I, Geil L, Duh FM, Angeloni D, Zbar B, Lerman MI, Stanbridge EJ, Minna JD, Protopopov A, Li J, Kashuba V, Klein G, Zabarovsky ER. The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proc Natl Acad Sci U S A. 2001;98(13):7504-9.
[4] Kashuba VI, Li J, Wang F, Senchenko VN, Protopopov A, Malyukova A, Kutsenko AS, Kadyrova E, Zabarovska VI, Muravenko OV, Zelenin AV, Kisselev LL, Kuzmin I, Minna JD, Winberg G, Ernberg I, Braga E, Lerman MI, Klein G, Zabarovsky ER. RBSP3 (HYA22) is a tumor suppressor gene implicated in major epithelial malignancies. Proc Natl Acad Sci U S A. 2004;101(14):4906-11.
[5] Kashuba VI, Skripkina IIa, Saraev DV, Gordiiuk VV, Vinnitskaia AB, Tsyba LA, Pogrebnoi PV, Blinov VM, Zabarovskii ER, Ryndich AV. Identification of changes in gene loci potentially associated with cervical cancer using NotI microarrays. Ukr Biokhim Zh. 2006;78(2):113-20.
[6] Maniatis T., Fritsch E. F., Sambrook J. Molecular cloning: a laboratory manual New York: Cold Spring Harbor Lab. publ., 1982 545 p.
[7] Skrypkina I. YA., Kashuba V. I., Hordyyuk V. V., Sarayev D. V., Zubko V. I., Zhonnyk YU. M., Tsyba L. A., Blinov V. M., Uhryn D . D., Mykhaylyk A. A., Yatsula B. A., Zabarovs'kyy YE. R., Ryndych A. V., Vozianov O. F. Identification of changes in gene loci potentially involved in the development of kidney cancer, with the new technology NotI-microchips. Dop. NAN Ukrayiny 2006 11:188–192.
[8] Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156-9.
[9] Xu ZM, Yu L, Lu XC, Han WD, Li XJ, Jing Y, Wang SH, Jin HJ, Lon FD. Cloning of the full length cDNA for a novel leukemia relapse-associated candidate gene LRP15. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2003;11(1):22-6.
[10] Dou LP, Wang C, Xu ZM, Kang HY, Fan H, Lou FD, Yu L. Methylation pattern of LRP15 gene in leukemia. Chin Med Sci J. 2007;22(3):187-91.
[11] Fazi F, Zardo G, Gelmetti V, Travaglini L, Ciolfi A, Di Croce L, Rosa A, Bozzoni I, Grignani F, Lo-Coco F, Pelicci PG, Nervi C. Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia. Blood. 2007;109(10):4432-40.
[12] Pimanda JE, Ottersbach K, Knezevic K, Kinston S, Chan WY, Wilson NK, Landry JR, Wood AD, Kolb-Kokocinski A, Green AR, Tannahill D, Lacaud G, Kouskoff V, G?ttgens B. Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc Natl Acad Sci U S A. 2007;104(45):17692-7.
[13] Schneider EM, Torlakovic E, Stuhler A, Diehl V, Tesch H, Giebel B. The early transcription factor GATA-2 is expressed in classical Hodgkin's lymphoma. J Pathol. 2004;204(5):538-45.
[14] Umeoka K, Sanno N, Osamura RY, Teramoto A. Expression of GATA-2 in human pituitary adenomas. Mod Pathol. 2002;15(1):11-7.
[15] Jeong H, Kim YR, Kim KN, Choe JG, Chung JK, Kim MK. Effect of all-trans retinoic acid on sodium/iodide symporter expression, radioiodine uptake and gene expression profiles in a human anaplastic thyroid carcinoma cell line. Nucl Med Biol. 2006;33(7):875-82.
[16] Lee S, Garner EI, Welch WR, Berkowitz RS, Mok SC. Over-expression of hypoxia-inducible factor 1 alpha in ovarian clear cell carcinoma. Gynecol Oncol. 2007;106(2):311-7.
[17] Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin D, Zhang X, Feng L, Lei W, Zhang Z, Guo S, Han N, Tong W, Feng X, Gao Y, Cheng S. Identification of genes differentially expressed in human primary lung squamous cell carcinoma. Lung Cancer. 2007;56(3):307-17.
[18] Lesiak K., Sztiller-Sikorska M., Czyz M. Transcription factors in the development and progression of melanoma. Postepy Hig Med Dosw (Online). 2007;61:576-95.
[19] Ellerhorst JA, Naderi AA, Johnson MK, Pelletier P, Prieto VG, Diwan AH, Johnson MM, Gunn DC, Yekell S, Grimm EA. Expression of thyrotropin-releasing hormone by human melanoma and nevi. Clin Cancer Res. 2004;10(16):5531-6.
[20] Li XL, Eishi Y, Bai YQ, Sakai H, Akiyama Y, Tani M, Takizawa T, Koike M, Yuasa Y. Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma. Int J Oncol. 2004;24(2):257-63.
[21] Gure AO1, Stockert E, Scanlan MJ, Keresztes RS, Jager D, Altorki NK, Old LJ, Chen YT. Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer. Proc Natl Acad Sci U S A. 2000;97(8):4198-203.
[22] Tsuneoka M, Koda Y, Soejima M, Teye K, Kimura H. A novel myc target gene, mina53, that is involved in cell proliferation. J Biol Chem. 2002;277(38):35450-9.
[23] Teye K, Tsuneoka M, Arima N, Koda Y, Nakamura Y, Ueta Y, Shirouzu K, Kimura H. Increased expression of a Myc target gene Mina53 in human colon cancer. Am J Pathol. 2004;164(1):205-16.
[24] Gonzalez-Sancho JM, Garcia V, Bonilla F, Munoz A. Thyroid hormone receptors/THR genes in human cancer. Cancer Lett. 2003;192(2):121-32.
[25] Li Z, Li W, Meklat F, Wang Z, Zhang J, Zhang Y, Lim SH. A yeast two-hybrid system using Sp17 identified Ropporin as a novel cancer-testis antigen in hematologic malignancies. Int J Cancer. 2007;121(7):1507-11.
[26] Barber RD, Harmer DW, Coleman RA, Clark BJ. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics. 2005;21(3):389-95.
[27] Tsuzuki S, Kitajima K, Nakano T, Glasow A, Zelent A, Enver T. Cross talk between retinoic acid signaling and transcription factor GATA-2. Mol Cell Biol. 2004;24(15):6824-36.
[28] Ren M, Pozzi S, Bistulfi G, Somenzi G, Rossetti S, Sacchi N. Impaired retinoic acid (RA) signal leads to RARbeta2 epigenetic silencing and RA resistance. Mol Cell Biol. 2005;25(23):10591-603.