Biopolym. Cell. 2008; 24(3):212-217.
Structure and Function of Biopolymers
Effects of teichoic acid from Staphylococcus aureus on tumor growth
- Taras Shevchenko National University of Kyiv
64, Volodymyrska Str., Kyiv, Ukraine, 01601
Abstract
The influence of the teichoic acid from S. aureus Wood 46 on Lewis lung carcinoma growth and tumor dissemination was studied. The administration of teichoic acid in the dose of 2 μg/g carried simultaneously with tumor cells transplantation inhibited the primary tumor growth and prevented metastases formation in the experimental animals.
Keywords: teichoic acid, Lewis lung carcinoma
Full text: (PDF, in Ukrainian)
References
[1]
Zaridze DG. Epidemiology, mechanisms of cancerogenesis and prevention of neoplasms. Arkh Patol. 2002;64(2):53-61.
[2]
Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539-45.
[3]
Bobrovnik SA. Infection, autoimmune diseases, atherosclerosis, infarct, stroke, cancerogenesis: what is in common. Ukr Biokhim Zh. 2002;74(4):135-40.
[5]
Keller R, Keist R, Gustafson JE. Antitumor activity of bacteria and bacterial products: enhancement of the tumor-protective effect of bacteria by lipoteichoic acid. Cancer Lett. 1994;82(1):99-104.
[6]
Konturek PC, Konturek SJ, Pierzchalski P, Bielanski W, Duda A, Marlicz K, Starzynska T, Hahn EG. Cancerogenesis in Helicobacter pylori infected stomach--role of growth factors, apoptosis and cyclooxygenases. Med Sci Monit. 2001;7(5):1092-107.
[8]
Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481-90.
[9]
Maeda H, Akaike T, Wu J, Noguchi Y, Sakata Y. Bradykinin and nitric oxide in infectious disease and cancer. Immunopharmacology. 1996;33(1-3):222-30.
[10]
Terman DS. Protein A and staphylococcal products in neoplastic disease. Crit Rev Oncol Hematol. 1985;4(2):103-24.
[11]
Quan WD Jr, Palackdharry CS. Common cancers--immunotherapy and multidisciplinary therapy: Parts III and IV. Dis Mon. 1997;43(11):745-808.
[12]
Shimizu M, Matsuzawa A, Takeda Y. A novel method for modification of tumor cells with bacterial superantigen with a heterobifunctional cross-linking agent in immunotherapy of cancer. Mol Biotechnol. 2003;25(1):89-94.
[13]
Wang Q, Yu H, Zhang L, Ju D, Pan J, Xia D, He L, Wang J, Cao X. Vaccination with IL-18 gene-modified, superantigen-coated tumor cells elicits potent antitumor immune response. J Cancer Res Clin Oncol. 2001;127(12):718-26.
[14]
Lycke N. From toxin to adjuvant: the rational design of a vaccine adjuvant vector, CTA1-DD/ISCOM. Cell Microbiol. 2004;6(1):23-32.
[15]
Hara I, Sato N, Miyake H, Muramaki M, Hikosaka S, Kamidono S. Introduction of 65 kDa antigen of Mycobacterium tuberculosis to cancer cells enhances anti-tumor effect of BCG therapy. Microbiol Immunol. 2004;48(4):289-95.
[16]
Mastrangelo MJ, Maguire HC Jr, Sato T, Nathan FE, Berd D. Active specific immunization in the treatment of patients with melanoma. Semin Oncol. 1996;23(6):773-81.
[17]
Sekine K, Ohta J, Onishi M, Tatsuki T, Shimokawa Y, Toida T, Kawashima T, Hashimoto Y. Analysis of antitumor properties of effector cells stimulated with a cell wall preparation (WPG) of Bifidobacterium infantis. Biol Pharm Bull. 1995;18(1):148-53.
[18]
Wang JE, Dahle MK, McDonald M, Foster SJ, Aasen AO, Thiemermann C. Peptidoglycan and lipoteichoic acid in gram-positive bacterial sepsis: receptors, signal transduction, biological effects, and synergism. Shock. 2003;20(5):402-14.
[19]
Sriskandan S, Cohen J. Gram-positive sepsis. Mechanisms and differences from gram-negative sepsis. Infect Dis Clin North Am. 1999;13(2):397-412.
[20]
Calvinho LF, Almeida RA, Oliver SP. Influence of bacterial factors on proliferation of bovine mammary epithelial cells. Rev Argent Microbiol. 2001;33(1):28-35.
[21]
Heumann D, Glauser MP, Calandra T. Molecular basis of host-pathogen interaction in septic shock. Curr Opin Microbiol. 1998;1(1):49-55.
[22]
Bruserud O, Wendelbo O, Paulsen K. Lipoteichoic acid derived from Enterococcus faecalis modulates the functional characteristics of both normal peripheral blood leukocytes and native human acute myelogenous leukemia blasts. Eur J Haematol. 2004;73(5):340-50.
[23]
Okamoto M, Ohe G, Oshikawa T, Furuichi S, Nishikawa H, Tano T, Ahmed SU, Yoshida H, Moriya Y, Saito M, Sato M. Enhancement of anti-cancer immunity by a lipoteichoic-acid-related molecule isolated from a penicillin-killed group A Streptococcus. Cancer Immunol Immunother. 2001;50(8):408-16.
[24]
Okamoto M, Ohe G, Furuichi S, Nishikawa H, Oshikawa T, Tano T, Ahmed SU, Yoshida H, Moriya Y, Matsubara S, Ryoma Y, Saito M, Sato M. Enhancement of anti-tumor immunity by lipoteichoic acid-related molecule isolated from OK-432, a streptococcal agent, in athymic nude mice bearing human salivary adenocarcinoma: role of natural killer cells. Anticancer Res. 2002;22(6A):3229-39.
[25]
Gao JJ, Xue Q, Zuvanich EG, Haghi KR, Morrison DC. Commercial preparations of lipoteichoic acid contain endotoxin that contributes to activation of mouse macrophages in vitro. Infect Immun. 2001;69(2):751-7.
[26]
Levels JH, Abraham PR, van Barreveld EP, Meijers JC, van Deventer SJ. Distribution and kinetics of lipoprotein-bound lipoteichoic acid. Infect Immun. 2003;71(6):3280-4.
[27]
Kutsenok VV, Skivka LM, Gorobetc OB, Lozinski MO, Borisevich A. H, Choline VV, Gamaleja NF 5-Aminolevulinic acid as a photosensitizer for photodynamic tumor therapy (preclinical studies). Onkologiia. 2004. 5(3):225–230.
[28]
Rashba Ye. YA., Matsyuk V. M., Musiyenko V. I. A-17 homogenizer. Disintegration of microorganisms. Pushchino-na-Oke, 1972:159-162.
[29]
Archibald AR Research Methods carbohydrates. M: Vyssh. shkola,, 1975. 350.
[30]
Shashkov AS, Streshinskaya GM, Kozlova YuI, Potekhina NV, Taran VV, Evtushenko LI, Naumova IB. Structure of cell wall teichoic acid of Nocardiopsis alborubida. Biokhimiia. 1997; 62(10):1327–31.
[31]
Taussky HB, Shorr E., Kurzmann G. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953;202(2):675-85.
[32]
Glaser L., Burger M. The synthesis of teichoic acid. 3 Glucosylation of poly glycerolphosphate. J Biol Chem. 1964;239:3187-91.
[33]
Streshinskaya GM, Kozlova YuI, Evtushenko LI, Taran VV, Shashkov AS, Naumova IB. Teichoic acid of Nocardiopsis ssp. VKM Ac-1457 cell walls. Biokhimiia. 1996; 61(2):378–82.
[34]
Skivka LM, Putnikov AV, Pozur VV, Pozur VK. Effect intaktyvovanoho S. aureus growth Lewis carcinoma in mice. Visn. ONU., 2004. 10, 3:155-162.
[35]
Kengatharan KM, De Kimpe SJ, Thiemermann C. Role of nitric oxide in the circulatory failure and organ injury in a rodent model of gram-positive shock. Br J Pharmacol. 1996;119(7):1411-21.
[36]
Nau R, Eiffert H. Minimizing the release of proinflammatory and toxic bacterial products within the host: a promising approach to improve outcome in life-threatening infections. FEMS Immunol Med Microbiol. 2005;44(1):1-16.
[37]
Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev. 2003;16(4):637-46.
[38]
Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002;168(2):554-61.
[39]
Netea MG, van der Graaf C, Van der Meer JW, Kullberg BJ. Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system. J Leukoc Biol. 2004;75(5):749-55.
[40]
Moreno C., Sanchez-Ibarrola A. Toll type receptors: molecular bases of the relationship between innate and adaptation responses of the immune system. Rev Med Univ Navarra. 2003;47(3):29-33.
[41]
Palaniyar N, Nadesalingam J, Reid KB. Pulmonary innate immune proteins and receptors that interact with gram-positive bacterial ligands. Immunobiology. 2002;205(4-5):575-94.
[42]
Middelveld RJ, Alving K. Synergistic septicemic action of the gram-positive bacterial cell wall components peptidoglycan and lipoteichoic acid in the pig in vivo. Shock. 2000;13(4):297-306.