Biopolym. Cell. 2007; 23(6):501-510.
Molecular and Cell Biotechnologies
Optimization of sucrose measurement working procedure in real samples using conductometric enzyme biosensor
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - Taras Shevchenko National University of Kyiv
64, Volodymyrska Str., Kyiv, Ukraine, 01033
Abstract
The working procedure of sucrose and glucose conductometric biosensors with real samples of juices and sweet drinks has been presented. For the purpose of sensitivity and stability improvement of the sucrose biosensor, optimal enzyme proportions and concentrations in its bioselective element have been chosen. Different variants of determination of sucrose and glucose in real samples using the biosensor have been considered. The sucrose and glucose measurement has been carried out in juices and sweet drinks. The method suggested could be used in food industry for the production control and optimization.
Keywords: conductometric enzyme biosensor, immobilized enzymes, sucrose, glucose
Full text: (PDF, in English) (PDF, in Ukrainian)
References
[1]
Skryshevska IV, Korpan YI, Soldatkin AP. Application of enzyme biosensor base on pH-sensitive field transistors for determination of glucose concentration in potato juice. Biopolym Cell. 2003; 19(6):553-7.
[2]
Schiweck H. Zusammensetzung von Zuckerbenmelassen. Zuckerindustrie. 1994;119(4): 272-282.
[3]
Thielecke K. Zur Zusammensetzung von Rubenmelassen. Branntweinwirtschaft. 1987; 127 (13):193-5.
[4]
Schmid DR, Scheller F. Biosensors. Application in medicine, environmental protection and process control. Weinheim: VCH, 1990. 350 p.
[5]
Tsao JCY. New by products from molasses. Sugar y azucar. 1964; 59(9):98-9.
[6]
Surareungchai W, Worasing S, Sritongkum P, Tanticharoen M, Kirtikara K. Dual electrode signal-subtracted biosensor for simultaneous flow injection determination of sucrose and glucose. Anal Chim Acta. 1999;380(1):7–15.
[7]
Lowman DW, Maciel GE. Determination of sucrose in sugar beet juices by nuclear magnetic resonance spectrometry. Anal Chem. 1979;51(1):85–90.
[8]
Thevenot DR, T?th K, Durst RA, Wilson GS. Electrochemical Biosensors: Recommended Definitions and Classification. Pure and Applied Chemistry. 1999;71(12):2333-48.
[9]
Gouda MD, Kumar MA, Thakur MS, Karanth NG. Enhancement of operational stability of an enzyme biosensor for glucose and sucrose using protein based stabilizing agents. Biosens Bioelectron. 2002;17(6-7):503–7.
[10]
Mutlu S, Alp B, ?zmelles RS, Mutlu M. Amperometric determination of enzymatic activity by multienzyme biosensors. J Food Eng. 1997;33(1-2):81–6.
[11]
Aoki K, Uchida H, Katsube T, Ishimaru Y, Iida T. Integration of bienzymatic disaccharide sensors for simultaneous determination of disaccharides by means of light addressable potentiometric sensor. Anal Chim Acta. 2002;471(1):3–12.
[12]
Sosnitza P, Farooqui M, Saleemuddin M, Ulber R, Scheper T. Application of reversible immobilization techniques for biosensors. Anal Chim Acta. 1998;368(3):197–203.
[13]
Popp J. Sandwich enzyme membranes for amperometric multi-biosensor applications: improvement of linearity and reduction of chemical cross-talk. Biosens Bioelectron. 1995;10(3-4):243–9.
[14]
Bertocchi P, Ciranni E, Compagnone D, Magearu V, Palleschi G, Pirvutoiu S, Valvo L. Flow injection analysis of mercury(II) in pharmaceuticals based on enzyme inhibition and biosensor detection. J Pharm Biomed Anal. 1999;20(1-2):263-9.
[15]
Mohammadi H, Amine A, Cosnier S, Mousty C. Mercury–enzyme inhibition assays with an amperometric sucrose biosensor based on a trienzymatic-clay matrix. Anal Chim Acta. 2005;543(1-2):143–9.
[16]
Sosnitza P, Irtel F, Ulber R, Busse M, Faurie R, Fischer L, Scheper T. Flow injection analysis system for the supervision of industrial chromatographic downstream processing in biotechnology. Biosens Bioelectron. 1998;13(12):1251-5.
[17]
Gu?mas Y, Boujtita M, el Murr N. Biosensor for determination of glucose and sucrose in fruit juices by flow injection analysis. Appl Biochem Biotechnol. 2000;89(2-3):171-81.
[18]
Klinchan S, Chotiwongpipat W, Suwannakum T. Construction of sensor chip by electrochemicalpoly-merization techniques for sucrose determination. J. KMITENB. 2002. 12(1):12-6.
[19]
Dzyadevich SV, Soldatkin AP. Conductometric method of measurements in enzyme analysis. Ukr Biokhim Zh. 1994; 66(4):30-42.
[20]
Dzyadevych SV. Conductometric enzyme biosensors: theory, technology, application. Biopolym Cell. 2005; 21(2):91-106.
[21]
Soldatkin OO, Peshkova VM, Dzyadevych SV, El’skaya AV. Conductometric biosensor based on three-enzyme system for detection of sucrose in model solutions. Boitekhnologiia (Kiev); 2007;1(1).
[22]
Dzyadevych SV, Shul’ga AA, Patskovsky SV, Arkhypova VM, Soldatkin AP, Strikha VI. Thin-film conductometric transducer for enzume biosensors. Electrokhimia. 1994; 30(8):982-7
[23]
Dziadevych SV, Soldatkin OP, Arkhypova VM, Shulha OA, Iel?ka HV. [A conductometric enzymatic glucose sensor. A search for ways to improve analytical characteristics]. Ukr Biokhim Zh. 1995;67(6):53-9.
[24]
Arkhypova VM. Optimization of general characteristics of conductometric enzyme biosensors for analysis of real samples: Author thesis kand. biol. nauk. K., 1998. 19 p.
[25]
Dzyadevich SV, Korpan YI, Arkhipova VN, Alesina MY, Martelet C, El’Skaya AV, et al. Application of enzyme field-effect transistors for determination of glucose concentrations in blood serum. Biosens Bioelectron. 1999;14(3):283–7.