Biopolym. Cell. 2007; 23(4):338-346.
Molecular and Cell Biotechnologies
Genetic instability of mouse embryonic germinative G1 cell line and disfunction of the mitotic checkpoint and p53
1Iatsyshyna A. P., 1Kvasha S. M., 1Pidpala O. V., 1Ruban T. P., 1Vagina I. M., 1Lukash L. L.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The ability of cells of mouse G1 cell line to survive after treatment with different concentrations of colchicine has been analysed. We have shown that G1 cells at 26th and 114th passages are less sensitive to the treatment with colchicine than BALB/c mouse embryonic fibroblasts. These results indicate attenuation of the mitotic checkpoint of G1 cells. The expression of p53 has been detected at low levels in cells of G1 cell line and its sublines G1-OA and G1-T by Western blotting. It has been shown by immunoprecipitation that G1 cells contain wild type and mutant p53 that could lead to the disfunction of p53. Genetic instability of G1 cell line is possibly associated with the failure of the mitotic checkpoint and functional inactivation of p53.
Keywords: mouse cell in vitro, mitotic checkpoint, chromosomal instability, p53

References

[1] Burds AA, Lutum AS, Sorger PK. Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci U S A. 2005;102(32):11296-301.
[2] Cheng KC, Loeb LA. Genomic instability and tumor progression: mechanistic considerations. Adv Cancer Res. 1993;60:121-56.
[3] Holliday R. Chromosome error propagation and cancer. Trends Genet. 1989;5(2):42-5.
[4] Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih IeM, Vogelstein B, Lengauer C. The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci U S A. 2002;99(25):16226-31.
[5] Draviam VM, Xie S, Sorger PK. Chromosome segregation and genomic stability. Curr Opin Genet Dev. 2004;14(2):120-5.
[6] Rudner AD, Murray AW. The spindle assembly checkpoint. Curr Opin Cell Biol. 1996;8(6):773-80.
[7] Biggins S, Murray AW. Sister chromatid cohesion in mitosis. Curr Opin Cell Biol. 1998;10(6):769-75.
[8] Jallepalli PV, Lengauer C. Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer. 2001;1(2):109-17.
[9] Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B. Mutations of mitotic checkpoint genes in human cancers. Nature. 1998;392(6673):300-3.
[10] Kops GJ, Foltz DR, Cleveland DW. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci U S A. 2004;101(23):8699-704.
[11] Fukasawa K, Wiener F, Vande Woude GF, Mai S. Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene. 1997;15(11):1295-302.
[12] Harvey M, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A, Donehower LA. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet. 1993;5(3):225-9.
[13] Harvey M, Sands AT, Weiss RS, Hegi ME, Wiseman RW, Pantazis P, Giovanella BC, Tainsky MA, Bradley A, Donehower LA. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene. 1993;8(9):2457-67.
[14] Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SE, Salter DM, Bird CC, Wyllie AH, Hooper ML, et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene. 1994;9(2):603-9.
[15] Bouffler SD, Kemp CJ, Balmain A, Cox R. Spontaneous and ionizing radiation-induced chromosomal abnormalities in p53-deficient mice. Cancer Res. 1995;55(17):3883-9.
[16] Donehower LA, Godley LA, Aldaz CM, Pyle R, Shi YP, Pinkel D, Gray J, Bradley A, Medina D, Varmus HE. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev. 1995;9(7):882-95.
[17] Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000;77:81-137.
[18] Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253(5015):49-53.
[19] Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature. 1991;351(6326):453-6.
[20] Lane DP, Benchimol S. p53: oncogene or anti-oncogene? Genes Dev. 1990;4(1):1-8.
[21] Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev. 1996;10(9):1054-72.
[22] Mowat MR. p53 in tumor progression: life, death, and everything. Adv Cancer Res. 1998;74:25-48.
[23] Sionov RV, Haupt Y. The cellular response to p53: the decision between life and death. Oncogene. 1999;18(45):6145-57.
[24] Heinrichs S, Deppert W. Apoptosis or growth arrest: modulation of the cellular response to p53 by proliferative signals. Oncogene. 2003;22(4):555-71.
[25] Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15-6.
[26] Albrechtsen N, Dornreiter I, Grosse F, Kim E, Wiesm?ller L, Deppert W. Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene. 1999;18(53):7706-17.
[27] Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408(6810):307-10.
[28] el-Deiry WS. Regulation of p53 downstream genes. Semin Cancer Biol. 1998;8(5):345-57.
[29] Lukash LL, Iatsyshyna AP, Pidpala OV, Vagina IM, Kochubey TP. Establishment of new lines of murine stem cells and investigation of the influence of microenvironment on their karyotypical variability in vitro. Fiziologiia i biokhimiia kul'turnykh rasteniy. 2006; 38(2):144-52.
[30] Iatsyshyna AP, Pidpala OV, Ruban TP, Timoshchuk OV, Lukash LL. [Cytomorphological charasteristics of a novel mouse cell line G1]. Tsitol Genet. 2006;40(3):49-58.
[31] Iatsyshyna AP, Pidpala OV, Kochubey TP, Lukash LL. Cytogenetic analysis of the spontaneously immortalized mouse cell line G1. Biopolym Cell. 2006; 22(4):299-306.
[32] Iatsyshyna AP, Pidpala OV, Kochubey TP, Lukash LL. Spontaneous evolution kariotypichna mouse cells in vitro. Faktory eksperymental'noyi evolyutsiyi orhanizmiv. Kyyiv: Ahrarna nauka. 2004:88-92.
[33] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
[34] Sambrook J, Fritsh EF, Maniatis T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Lab. press, 1989.
[35] Plokhinskiy NA. Algorithms biometrics. Ed. Acad. USSR Academy of Gnedenko. Moscow: Moscow State University Press, 1980. 150 p.
[36] Alov IA. Mitosis cytophysiology and pathology. M.: Meditsina, 1972; 264 p.
[37] Carroll PE, Okuda M, Horn HF, Biddinger P, Stambrook PJ, Gleich LL, Li YQ, Tarapore P, Fukasawa K. Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene. 1999;18(11):1935-44.
[38] Sentein P. Inhibition of spindle assembly by colchicine and of cell cycle by cycloheximide. Comparison and combination of their cytological action on cleavage mitoses. Exp Cell Biol. 1979;47(5):368-91.
[39] Wang Y, Burke DJ. Checkpoint genes required to delay cell division in response to nocodazole respond to impaired kinetochore function in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1995;15(12):6838-44.
[40] Glazko TT, Iatsyshyna AP, Pidpala OV, Vavilina IV, Lukash LL. The sources of heterogeneity of embryo cell populations of mouse line BalB/c cultured in vitro. Biopolym Cell. 2006; 22(5):350-4.
[41] Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF. Abnormal centrosome amplification in the absence of p53. Science. 1996;271(5256):1744-7.
[42] Tarapore P, Fukasawa K. Loss of p53 and centrosome hyperamplification. Oncogene. 2002;21(40):6234-40.
[43] Yewdell JW, Gannon JV, Lane DP. Monoclonal antibody analysis of p53 expression in normal and transformed cells. J Virol. 1986;59(2):444-52.
[44] Gannon JV, Greaves R, Iggo R, Lane DP. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 1990;9(5):1595-602.
[45] Brachmann RK, Vidal M, Boeke JD. Dominant-negative p53 mutations selected in yeast hit cancer hot spots. Proc Natl Acad Sci U S A. 1996;93(9):4091-5.
[46] Morgunkova AA, Almazov VP, Strunina SM, Kopnin BP, Chumakov PM. [Dominant-negative inactivation of p53: the effect of the proportion between trans-dominant inhibitor and its target]. Mol Biol (Mosk). 2003;37(1):112-20.