Biopolym. Cell. 2007; 23(2):108-114.
Biomedicine
Impact of inductive and selective agents on biosynthesis of new antistaphylococcal antibiotic batumin
1Churkina L. N., 1Kravets A. N., 1Klochko V. V.
  1. D. K. Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
    154, Academika Zabolotnogo Str., Kyiv, Ukraine, 03680

Abstract

Application of high concentrations of antistaphylococcal antibiotic batumin in order to increase biosynthetic activity of the own strain-producent allowed selecting variants with increased pro­ ductivity. Clone Pseudomonas batumici No. 9 with maximum activity synthesized from 60 to 70 mg of batumin per I of culture medium, which was 2 times higher than the activity of the most productive natural strain-producent However, after storage of this culture in non-selective conditions we noticed gradual decrease in the activity. Chlortetracy dine possesses only selective influence, the result of which was raise in the content of clones with the increased activity in producent's population.
Keywords: batumin, chlortetrасуdine, strain-producent, Staphylococcus aureus

References

[1] Esipov SE, Kiprianova EA. Batumin, a novel antibiotic produce by Pseudomonas batumici nov. sp. 3187. 5th Int. Conf Chemical Synthesis of Antibiotics and Related Microbial Products: Abstr. Budapest: Hung Acad Sci publ., 1996: 14.
[2] Smirnov VV, Churkina LM, Nosenko HA, Bidnenko SI, Artysiuk OI, Pustovalova LI, Kiprianova OA, Harahulia OD. [Efficacy of diagnostic plates with batumin in identification and indication of staphylococci]. Lik Sprava. 2002;(5-6):27-31.
[3] Witte W, Cuny C, Mollmann WU. In vitro Wirksamkeit von Batumin auf Staphylococcus aureus. Chemother J. 1997; 6: 48-50.
[4] Smirnov VV, Churkina LN, Kiprianova EA. Antibiotic batumin for diagnostics of staphylococci and treatment of Staphylococcus aureus nasal carriage Poster presentation. 10th Int. Symp. on Staphylococci and Staphylococcal infections: Abstr. Tsukuba, 2002: 130.
[5] Smirnov VV, Kiprianova EA, Churkina LN. Batumin antibiotic in the fight against hospital staph infection. Intern. scientific. Conf. "Actual problems of infectious disease control." Kharkiv, 2003: 152.
[6] Smirnov VV, Kiprianova EA, Gvozdiak OR, Garagulia AD, Churkina LN, Proskuiakova NB, Kharchenko LA. [The use of batumin-containing disks for the rapid identification of staphylococci]. Zh Mikrobiol Epidemiol Immunobiol. 1999;(5):77-80.
[7] Smirnov VV, Churkina LN, Kravets AN, Garagulia AD. [Biosynthesis of the new antistaphylococcal antibiotic batumin]. Antibiot Khimioter. 1993;38(4-5):3-5.
[8] Smirnov VV, Churkina LN, Perepnikhatka VI, Mukvich NS, Garagulia AD, Kiprianova EA, Kravets AN, Dovzhenko SA. [Isolation of highly active strain producing the antistaphylococcal antibiotic batumin]. Prikl Biokhim Mikrobiol. 2000;36(1):55-8.
[9] Trenina GA, Trutneva EM. [Use of ristomycin during the selection of active variants of Proactinomyces fructiferi var. ristomycini]. Antibiotiki. 1966;11(9):770-4.
[10] Veselova SI. A comparative study of the lethal, selective and mutagenic effects of chlorotetracycline, oxytetracycline and streptomycin on Actinomyces aureofaciens and Actinomyces rimosus. I. A lethal and selective effect of chlortetracycline and oxytetracycline on Actinomyces aureofaciens and Actinomyces rimosus. Genetika. 1967; 12(12): 73-9.
[11] Hotta K, Takamura S. Visualization of potential antibiotic productivity of actinomycetes: Effect of antibiotics, amino acid analogues and shifp-down. ISBA'94: Int Symp Biol Actinomycet. Moscow, 1994: 168.
[12] Gorbunova NA, Iakovleva EP. [The action of its own antibiotic on the producer of imbricin growing on an agarized medium]. Antibiot Khimioter. 2000;45(5):6-8.
[13] Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol. 1996;165(6):359-69.
[14] Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell. 2000;103(7):1143-54.
[15] Smirnov VV, Vasyurenko ZP, Churkina LN. Lipids. Staphylococci. Kiev: Naukova Dumka 1988: 34-65.
[16] Smirnov VV, Churkina LN, Vasiurenko ZP. [Antibiotic AL-87 induction of changes in the fatty acid composition of phospholipids and neutral lipids in a sensitive strain of Staphylococcus aureus 209P]. Antibiot Khimioter. 1988;33(6):440-3.
[17] Cundliffe E. How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol. 1989;43:207-33.
[18] Ma Y, Patel J, Parry RJ. A novel valanimycin-resistance determinant (vlmF) from Streptomyces viridifaciens MG456-hF10. Microbiology. 2000;146 ( Pt 2):345-52.
[19] Ryan BM, Dougherty TJ, Beaulieu D, Chuang J, Dougherty BA, Barrett JF. Efflux in bacteria: what do we really know about it? Expert Opin Investig Drugs. 2001;10(8):1409-22.
[20] Skatrud PL. The impact of multiple drug resistance (MDR) proteins on chemotherapy and drug discovery. Prog Drug Res. 2002;58:99-131.
[21] Dairi T, Aisaka K, Katsumata R, Hasegawa M. A self-defense gene homologous to tetracycline effluxing gene essential for antibiotic production in Streptomyces aureofaciens. Biosci Biotechnol Biochem. 1995;59(10):1835-41.
[22] Turner MS, Helmann JD. Mutations in multidrug efflux homologs, sugar isomerases, and antimicrobial biosynthesis genes differentially elevate activity of the sigma(X) and sigma(W) factors in Bacillus subtilis. J Bacteriol. 2000;182(18):5202-10.
[23] Andrade AC, Van Nistelrooy JG, Peery RB, Skatrud PL, De Waard MA. The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen Genet. 2000;263(6):966-77.
[24] Ull?n RV, Liu G, Casqueiro J, Guti?rrez S, Ba?uelos O, Mart?n JF. The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics. 2002;267(5):673-83.