Biopolym. Cell. 2006; 22(6):458-467.
Molecular Biophysics
Physical factors of collagen triple helix stability
- A. Usikov Institute of Radio Physics and Electronics, NAS of Ukraine
12, Proskura Str., Kharkov, Ukraine, 61085
Abstract
In the present study a complex approach of a number of expeÂrimental techniques, namely infrared spectroscopy, quartz piezogravimetry, and differential scanning calorimetry, was used to estimate the hydration energy and enthalpy of interpeptide hydrogen bonds. On the basis of the results obtained the values of relative contributions of energies of interactions of different types into the total energy of stabilization of triple helical collagen structures were evaluated.
Keywords: collagen, poly (Gly-Pro-Pro), hydration energy, enthalpy of hydrogen bonds, infrared spectroscopy.
Full text: (PDF, in English) (PDF, in Russian)
References
[1]
Ramshaw JA, Shah NK, Brodsky B. Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J Struct Biol. 1998;122(1-2):86-91.
[2]
Nikitin VN, Perskiy EE, Utevskaya LA. Developmental and evolutionary biochemistry of collagen structures. K: Naukova Dumka. 1977; 279 p.
[3]
Kramer RZ, Bella J, Mayville P, Brodsky B, Berman HM. Sequence dependent conformational variations of collagen triple-helical structure. Nat Struct Biol. 1999;6(5):454-7.
[4]
Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC. Structural basis of collagen recognition by integrin alpha2beta1. Cell. 2000;101(1):47-56.
[5]
Berisio R, Vitagliano L, Mazzarella L, Zagari A. Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)(10)](3). Protein Sci. 2002;11(2):262-70.
[6]
Berisio R, Vitagliano L, Mazzarella L, Zagari A. Crystal structure of a collagen-like polypeptide with repeating sequence Pro-Hyp-Gly at 1.4 A resolution: implications for collagen hydration. Biopolymers. 2000-2001;56(1):8-13.
[7]
Rainey JK, Goh MC. A statistically derived parameterization for the collagen triple-helix. Protein Sci. 2002;11(11):2748-54.
[8]
Pineri MH, Escoubes M, Roche G. Water--collagen interactions: calorimetric and mechanical experiments. Biopolymers. 1978;17(12):2799-2815.
[9]
Eisenmenger F, Eisenhaber F, Tumanyan VG, Esipova NG. Monte Carlo simulation of the water environment of collagen. Stud Biophys. 1983; 98:155-60.
[10]
Lazarev YA, Grishkovsky BA, Khromova TB, Lazareva AV, Grechishko VS. Bound water in the collagen-like triple-helical structure. Biopolymers. 1992;32(2):189-95.
[11]
Privalov PL. Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem. 1982;35:1-104.
[12]
Engel J, Chen HT, Prockop DJ, Klump H. The triple helix in equilibrium with coil conversion of collagen-like polytripeptides in aqueous and nonaqueous solvents. Comparison of the thermodynamic parameters and the binding of water to (L-Pro-L-Pro-Gly)n and (L-Pro-L-Hyp-Gly)n. Biopolymers. 1977;16(3):601-22.
[13]
Holmgren SK, Taylor KM, Bretscher LE, Raines RT. Code for collagen's stability deciphered. Nature. 1998;392(6677):666-7.
[14]
Jenkins CL, Raines RT. Insights on the conformational stability of collagen. Nat Prod Rep. 2002;19(1):49-59.
[15]
Tumanyan VG, Esipova NG. Comprehensive conformational analysis of (Gly-Pro-Pro)n and (Gly-Pro-Hyp)n related to collagen. Biopolymers. 1982;21(3):475-97.
[16]
Lazarev YA, Lobachov VM, Grishkovski BA, Shibnev VA, Grechishko VS, Finogenova MP, Esipova NG, Rogulenkova VN. Formation of the collagen-like triple-helical structure in oligopeptides during elongation of the molecular chain. Biopolymers. 1978;17(5):1215-33.
[17]
Bella J, Eaton M, Brodsky B, Berman HM. Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science. 1994;266(5182):75-81.
[18]
Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J. 1999;76(6):3243-52.
[19]
Traub W, Yonath A. Polymers of tripeptides as collagen models. I. X-ray studies of poly(L-prolyl-glycyl-L-proline) and related polytripeptides. J Mol Biol. 1966;16(2):404-14.
[20]
Semenov M, Bolbukh T, Maleev V. Infrared study of the influence of water on DNA stability in the dependence on AT/GC composition. J Mol Struct. 1997;408-409:213–7.
[21]
Semenov MA, Bereznhyak EG. Hydration and stability of nucleic acids in the condensed state. Comments Mol Cel Biophys. 2000; 10: 1-23.
[22]
Chandrakasan G, Torchia DA, Piez KA. Preparation of intact monomeric collagen from rat tail tendon and skin and the structure of the nonhelical ends in solution. J Biol Chem. 1976;251(19):6062-7.
[23]
Wexler A, Hasegawa S. Relative humidity-temperature relationships of some saturated salt solutions in the temperature range 0 degree to 50 degrees C. J Res Natl Bur Stand. 1954;53(1):19-26.
[24]
Lazarev YA, Grishkovsky BA, Khromova TB. Amide I band of IR spectrum and structure of collagen and related polypeptides. Biopolymers. 1985;24(8):1449-78.
[25]
Semenov MA, Starikov EB, Bolbukh TV. Hydration isotherms and structural state of nucleotides and polynuc leotides. Stud biophys. 1988; 123: 217-224.
[26]
Gasan AI, Maleev VYa, Semenov MA. Role of water in stabilizing the helical biomacromolecules DNA and collagen. Stud biophys. 1990.; 136:171-8.
[27]
Falk M, Hartman KA, Lord RC. Hydration of Deoxyribonucleic Acid. I. a Gravimetric Study . J Am Chem Soc. 1962;84(20):3843–6.
[28]
Buck M, Karplus M. Hydrogen Bond Energetics: A Simulation and Statistical Analysis of N -Methyl Acetamide (NMA), Water, and Human Lysozyme. J Phys Chem. 2001;105(44):11000–15.
[29]
Miyazawa T, Blout ER. The Infrared Spectra of Polypeptides in Various Conformations: Amide I and II Bands 1 . J Am Chem Soc. 1961;83(3):712–9.
[30]
Chirgadza YuN. Infrared spectra and structure of polypeptides and proteins. M.: Nauka, 1965. 135 p.
[31]
Traub W, Yonath A. Polymers of tripeptides as collagen models. I. X-ray studies of poly(L-prolyl-glycyl-L-proline) and related polytripeptides. J Mol Biol. 1966;16(2):404-14.
[32]
Gordon PL, Huang C, Lord RC, Yannas IV. The far-infrared spectrum of collagen. Macromolecules. 1974;7(6):954-6.
[33]
Melezhik EP, Semenov MA. Resonant interaction of carbonyl vibrations in the collagen structure. Biofiz Visn. 2003; 606(13):62-8.
[34]
Melezhik EP, Semenov MA, Ivanov AYu.ne structure of the amide I band FT-IR spectrum of collagen. Biofiz Visn. 2005; 665(15): 62-7.
[35]
Semenov MA. Hydration and structural condition of the nucleic acids in the condensed state: Thesis. ... dr fiz-mat. nauk. M.: MGU, 1990.
[36]
Schellman JA. The stability of hydrogen-bonded peptide structures in aqueous solution. C r Trav Lab Carlsberg Ser. Chim. 1955; 29: 230-259.
[37]
Radmer RJ, Klein TE. Triple helical structure and stabilization of collagen-like molecules with 4(R)-hydroxyproline in the Xaa position. Biophys J. 2006;90(2):578-88.
[38]
Maleev VY, Gasan AI. A statistical mechanical study of helix-coil transition in concentrated solutions of polypeptides and proteins. Biopolymers. 1974;13(12):2409-22.