Biopolym. Cell. 2006; 22(6):433-438.
Structure and Function of Biopolymers
Conformational flexibility of interdomain linker in bovine tyrosyl-tRNA synthetase studied by molecular dynamics simulation
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
Here we report a study of molecular dynamics of a YCD2 fragment of mammalian tyrosyl-tRNA
synthethase (Asp322-Ser528), which includes the COOH-terminal cytokine-like domain, intermodular
flexible linker, and H5-α-helix of catalytic core of synthetase. Our calculations show that while compact
C-terminal domain was less flexible and relatively stable, the interdomain linker shows a high degree of
conformational changes. After short relaxation time it forms a short helix-like structure, which may be
involved in the regulation of domain interaction and modulation of protein activities.
Keywords: Tyrosyl-tRNA synthetase, cytokine, C-module, molecular dynamics, linker flexibility
Full text: (PDF, in English)
References
[1]
Kornelyuk AI. Structural and functional investigation of mammalian tyrosyl-tRNA synthetase. Biopolym. Cell. 1998; 14(4):349-59.
[2]
Gnatenko DV, Korneliuk AI, Kurochkin IV, Ribkinska TA, Matsuka GKh. [Isolation and characteristics of functionally active proteolytically modified forms of tyrosyl-tRNA synthetase from bovine liver]. Ukr Biokhim Zh. 1991;63(4):61-7. .
[3]
Levanets OV, Naidenov VG, Odynets KA, Woodmaska MI, Matsuka GKh, Kornelyuk AI. Homology of C-terminal non-catalytic domain of mammalian tyrosyl-tRNA synthetase with cylokine EMAP II and non-catalytic domains of methionyl- and phenylalanyl-tRNA synthetases. Biopolym Cell. 1997; 13(6):474-8.
[4]
Bedouelle H. Recognition of tRNA(Tyr) by tyrosyl-tRNA synthetase. Biochimie. 1990;72(8):589-98. Review.
[5]
Golub AG, Odynets KA, Nyporko AYu, Konelyuk AI. Structure modeling of the COOH-terminal cytokine-like module of the mammalian cytoplasmic tyrosyl-tRNA synthetase. Biopolym Cell. 2000; 16(6):515-24.
[6]
Kleeman TA, Wei D, Simpson KL, First EA. Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine. J Biol Chem. 1997;272(22):14420-5.
[7]
Kao J, Ryan J, Brett G, Chen J, Shen H, Fan YG, Godman G, Familletti PC, Wang F, Pan YC, et al. Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem. 1992;267(28):20239-47.
[8]
Kao J, Houck K, Fan Y, Haehnel I, Libutti SK, Kayton ML, Grikscheit T, Chabot J, Nowygrod R, Greenberg S, et al. Characterization of a novel tumor-derived cytokine. Endothelial-monocyte activating polypeptide II. J Biol Chem. 1994;269(40):25106-19.
[9]
Tas MP, Murray JC. Endothelial-monocyte-activating polypeptide II. Int J Biochem Cell Biol. 1996;28(8):837-41.
[10]
Quevillon S, Agou F, Robinson JC, Mirande M. The p43 component of the mammalian multi-synthetase complex is likely to be the precursor of the endothelial monocyte-activating polypeptide II cytokine. J Biol Chem. 1997;272(51):32573-9.
[11]
Park SG, Jung KH, Lee JS, Jo YJ, Motegi H, Kim S, Shiba K. Precursor of pro-apoptotic cytokine modulates aminoacylation activity of tRNA synthetase. J Biol Chem. 1999;274(24):16673-6.
[12]
Kornelyuk AI, Tas MPR, Dubrovsky AL, Murray JC. Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1999; 15(2):168-72.
[13]
Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999;284(5411):147-51.
[14]
Wakasugi K, Schimmel P. Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J Biol Chem. 1999;274(33):23155-9.
[15]
Simos G, Sauer A, Fasiolo F, Hurt EC. A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol Cell. 1998;1(2):235-42.
[16]
Tan M, Heckmann K, Br?nen-Nieweler C. The micronuclear gene encoding a putative aminoacyl-tRNA synthetase cofactor of the ciliate Euplotes octocarinatus is interrupted by two sequences that are removed during macronuclear development. Gene. 1999;233(1-2):131-40.
[17]
Simos G, Segref A, Fasiolo F, Hellmuth K, Shevchenko A, Mann M, Hurt EC. The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 1996;15(19):5437-48.
[18]
Kurochkin IV, Korneliuk AI, Matsuka GKh. [Interaction of eukaryotic tyrosyl-tRNA-synthetase with high molecular weight RNA]. Mol Biol (Mosk). 1991;25(3):779-86.
[19]
Kalachniuk LH, Korneliuk OI, Matsuka HKh. [Tyrosine tRNA(Q*psiA) from bovine liver. Identification of its sites of interaction with homologous aminoacyl-trna synthetase using chemical modification]. Ukr Biokhim Zh. 1995;67(5):60-5.
[20]
Wriggers W, Chakravarty S, Jennings PA. Control of protein functional dynamics by peptide linkers. Biopolymers. 2005;80(6):736-46.
[21]
Levanets OV, Naidenov VG, Woodmaska MI, Odynets KA, Matsuka GH, Kornelyuk AI. PCR amplification, cloning and sequencing of cDNA fragment encoding a nucleotide binding domain of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1996; 12(5):66-71.
[22]
Levanets OV, Naidenov VG, Woodmaska MI, Matsuka GH, Kornelyuk AI. Cloning of cDNA encoding C-terminal part of mammalian tyrosyl-tRNA synthetase using of PCR-amplified radioactive probe. Biopolym Cell. 1997; 13(2):121-6.
[23]
Elofsson A, Fischer D, Rice DW, Le Grand SM, Eisenberg D. A study of combined structure/sequence profiles. Fold Des. 1996;1(6):451-61.
[24]
Odynets KA, Bazylevskyi OE, Kornelyuk AI. Homology modeling of structure of NH2-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase. Biopolym Cell. 2002; 18(6):547-50.
[25]
Lindhal E, Hess B, van der Spoel D. Gromacs 3.0: A package for molecular simulation and trajectory analysis III. Mol Mod. 2001; 7: 306-317.
[26]
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701-18.
[27]
Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714-23.
[28]
Dubrovsky AL, Savinskaya LA, Kornelyuk AI. Cloning and bacterial expression of the cytokine-like noncatalytic domain of bovine tyrosyl-tRNA synthetase. Biopolym Cell. 1998; 14(5):449-52.
[29]
Yaremchuk A, Kriklivyi I, Tukalo M, Cusack S. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J. 2002;21(14):3829-40.