Biopolym. Cell. 2006; 22(4):283-289.
Structure and Function of Biopolymers
Investigation of the interaction between isolated C-module of tyrosyl-tRNA synthetase and tRNA by fluorescence spectroscopy
1Kordysh M. A., 1Kornelyuk A. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680


The non-catalytic COOH-terminal module of mammalian tyrosyl-tRNA synthetase manifests a dual function: involvement in tRNA binding as a cis-factor and cytokine activity after proteolytic cleavage from synthetase catalytic core similar to EMAP II cytokine. The C-module of TyrRS contains a single Trp144 which is an intrinsic fluorescent probe in protein structure, but it is localized outside of RNA binding site. To explore the interaction between C-module and tRNA in solution the conservative aromatic Phe127 residue was substituted for Trp127 fluorophore by site-directed mutagenesis. This replacement allowed enhancing the protein quantum yield and determining the binding parameters of tRNA and C-module. The dissociation constant of the complex between C-module and tRNAPhe was calculated on the basis of spectrofluorometric titrations data. It was about 2.9·10–8M, and stoichiometry of the complex n=1.2.
Keywords: tyrosyl-tRNA synthetase, mutagenesis, fluorescence


[1] Mirande M. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol. 1991;40:95-142.
[2] Bonnefond L, Gieg? R, Rudinger-Thirion J. Evolution of the tRNA(Tyr)/TyrRS aminoacylation systems. Biochimie. 2005;87(9-10):873-83.
[3] Kornelyuk AI. Structural and functional investigation of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1998; 14(4):349-59.
[4] Kornelyuk AI, Tas MPR, Dubrovsky AL, Murray JC. Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase. Biopolym. Cell. 1999; 15(2):168-72.
[5] Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999;284(5411):147-51.
[6] Quevillon S, Agou F, Robinson JC, Mirande M. The p43 component of the mammalian multi-synthetase complex is likely to be the precursor of the endothelial monocyte-activating polypeptide II cytokine. J Biol Chem. 1997;272(51):32573-9.
[7] Simos G, Segref A, Fasiolo F, Hellmuth K, Shevchenko A, Mann M, Hurt EC. The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 1996;15(19):5437-48.
[8] Kushiro T, Schimmel P. Trbp111 selectively binds a noncovalently assembled tRNA-like structure. Proc Natl Acad Sci U S A. 2002;99(26):16631-5.
[9] Shalak V, Kaminska M, Mitnacht-Kraus R, Vandenabeele P, Clauss M, Mirande M. The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem. 2001;276(26):23769-76.
[10] Murzin AG. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 1993;12(3):861-7.
[11] Moras D. Structural aspects and evolutionary implications of the recognition between tRNAs and aminoacyl-tRNA synthetases. Biochimie. 1993;75(8):651-7.
[12] Kordysh MA, Odynets KA, Kornelyuk AI. Trp144 as a fluorescence probe for investigation of the C-module rapid conformation dynamics in eukaryotic tyrosyle-tRNA synthetase. Biopolym Cell. 2003; 19(5):436-9.
[13] Kordysh MA, Kornelyuk AI. The monitoring of conformational changes of the Trp144 residue environment in C-module of tyrosyl-tRNA synthetase undr heat denaturation. Dopovidi Nats Akad Nauk Ukrainy. 2004; (1):156-61.
[14] Kordysh MA, Kornelyuk AI. Fluorescence and dynamics of structural environment of TRP125 fluorophore in EMAP II cytokine. Biofiz Vistn. 2003; Iss.(13): 38-41.
[15] Kordysh MA, Dubrovsky OL, Kornelyuk AI. Local conformational transition of Trp125 in EMAP II cytokine inducted by physiological temperature. Physics of the Alive. 2005; 13(1):79–85.
[16] Dubrovsky AL, Brown Jn, Kornelyuk AI, Murray JC, Matsuka GKh. Bacterial expression of full-length and truncated forms of cytokine EMAP-2 and cytokine-like domain of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 2000; 16(3):229-235.
[17] Kanibolotskiy DS, Odynets KA, Skurskiy SI, Kornelyuk AI. Study of intramolecular mobility of cytokine-like C-terminal module of tyrosyl-mammalian tRNA synthetase by molecular dynamics. Physics live. 2003; 11(2):61-71.
[18] Roy S. Fluorescence quenching methods to study protein-nucleic acid interactions. Methods Enzymol. 2004;379:175-87.
[19] Golub A, Petrushenko Z, Odynets K, Dubrovsky A, Rozhko O, Matsuka G, Solecka K, Olszak K, Przykorska A, Kornelyuk A. Cytokine-like C-terminal module of mammalian tyrosyl-tRNA synthetase reveals structure-specific tRNA bind­ ing: Computational docking modeling and footprint analysis. Aminoacyl-tRNA synthetases in biology, medicine, and evolu­tion. Asilomar, 2002: 116.
[20] Renault L, Kerjan P, Pasqualato S, M?n?trey J, Robinson JC, Kawaguchi S, Vassylyev DG, Yokoyama S, Mirande M, Cherfils J. Structure of the EMAPII domain of human aminoacyl-tRNA synthetase complex reveals evolutionary dimer mimicry. EMBO J. 2001;20(3):570-8.
[21] Lakowicz J. R. Principles of fluorescent spectroscopy. 2nd Edition. New York: Plenum Press, 1999. 725 p.
[22] Reshetnyak YK, Koshevnik Y, Burstein EA. Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues. Biophys J. 2001;81(3):1735-58.
[23] Draper DE. Themes in RNA-protein recognition. J Mol Biol. 1999;293(2):255-70. Review.