Biopolym. Cell. 2006; 22(3):225-230.
Molecular Biophysics
Theoretical evaluation of the peptide chain segmental mobility in the molecule of human serum albumin
1Shchechkin I. E., 1Hushcha T. O.
  1. Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
    1, Murmans'ka Str., Kyiv, Ukraine, 02094

Abstract

The method for evaluation of mobility of peptide chain fragments in globular proteins is proposed. The method is based on the analysis of both the protein 3D structure friability and the values of non valent interactions between protein chain residues. The analysis is performed for a single protein conformation taken from X-ray structural data. The application of the proposed method to the molecule of human serum albumin has shown that the best mobility may be expected for the terminal chain segments (in the range of 33–137 and 500–582 residues), as well as for the segments located in the middle of the chain (257–304 residues). The obtained results may be used for selection of a mobility model while studying albumins dynamics.
Keywords: human serum albumin, conformational mobility, peptide chain, 3D structure friability

References

[1] He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature. 1992;358(6383):209-15.
[2] Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng. 1999;12(6):439-46.
[3] Curry S, Mandelkow H, Brick P, Franks N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol. 1998;5(9):827-35.
[4] Olivieri JR, Craievich AF. The subdomain structure of human serum albumin in solution under different pH conditions studied by small angle X-ray scattering. Eur Biophys J. 1995;24(2):77-84.
[5] Ferrer ML, Duchowicz R, Carrasco B, de la Torre JG, Acu?a AU. The Conformation of Serum Albumin in Solution: A Combined Phosphorescence Depolarization-Hydrodynamic Modeling Study. Biophysical J. 2001;80(5):2422–30.
[6] Fukuzaki M, Miura N, Shinyashiki N, Kurita D, Shioya S, Haida M, et al. Comparison of Water Relaxation Time in Serum Albumin Solution Using Nuclear Magnetic Resonance and Time Domain Reflectometry. J Phys Chem. 1995;99(1):431–5.
[7] Hushcha T, Kaatze U, Peytcheva A. Dynamics of human serum albumin studied by acoustic relaxation spectroscopy. Biopolymers. 2004;74(1-2):32-6.
[8] D?az N, Su?rez D, Sordo TL, Merz KM Jr. Molecular dynamics study of the IIA binding site in human serum albumin: influence of the protonation state of Lys195 and Lys199. J Med Chem. 2001;44(2):250-60.
[9] Getzoff E, Geysen H, Rodda S, Alexander H, Tainer J, Lerner R. Mechanisms of antibody binding to a protein. Science. 1987;235(4793):1191–6.
[10] Rini JM, Schulze-Gahmen U, Wilson IA. Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science. 1992;255(5047):959-65.
[11] Constantine KL, Friedrichs MS, Wittekind M, Jamil H, Chu CH, Parker RA, Goldfarb V, Mueller L, Farmer BT 2nd. Backbone and side chain dynamics of uncomplexed human adipocyte and muscle fatty acid-binding proteins. Biochemistry. 1998;37(22):7965-80.
[12] Nicholson LK, Yamazaki T, Torchia DA, Grzesiek S, Box A, Stahl SJ, Kaufman JD, Wingfield PT, Lam PYS, Jadhav PK, Hodge CN, Domaille PJ. Chang C-H flexibility and function in HIV-1 protease. Struct Biol. 1995; 2: 274-80.
[13] Collins JR, Burt SK, Erickson JW. Flap opening in HIV-1 protease simulated by 'activated' molecular dynamics. Nat Struct Biol. 1995;2(4):334-8.
[14] Wagner G. The importance of being floppy. Nat Struct Biol. 1995;2(4):255-7.
[15] Anselmi C, Bocchinfuso G, Scipioni A, De Santis P. Identification of protein domains on topological basis. Biopolymers. 2001;58(2):218-29.
[16] Fischer KF, Marqusee S. A rapid test for identification of autonomous folding units in proteins. J Mol Biol. 2000;302(3):701-12.
[17] Wodak SJ, Janin J. Location of structural domains in protein. Biochemistry. 1981;20(23):6544-52.
[18] Kundu S, Sorensen DC, Phillips GN Jr. Automatic domain decomposition of proteins by a Gaussian Network Model. Proteins. 2004;57(4):725-33.
[19] Yesylevskyy SO, Kharkyanen VN, Demchenko AP. Hierarchical clustering of the correlation patterns: new method of domain identification in proteins. Biophys Chem. 2006;119(1):84-93.
[20] Ooi T, Oobatake M, N?methy G, Scheraga HA. Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proc Natl Acad Sci U S A. 1987;84(10):3086-90.
[21] Momany FA, Carruthers LM, Scheraga HA. Intermolecular potentials from crystal data. IV. Application of empirical potentials to the packing configurations and lattice energies in crystals of amino acids. J Phys Chem. 1974;78(16):1621–30.
[22] Momany FA, McGuire RF, Burgess AW, Scheraga HA. Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J Phys Chem. 1975;79(22):2361–81.
[23] Nemethy G, Pottle MS, Scheraga HA. Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids. J Phys Chem. 1983;87(11):1883–7.
[24] Sippl MJ, Nemethy G, Scheraga HA. Intermolecular potentials from crystal data. 6. Determination of empirical potentials for O-H...O = C hydrogen bonds from packing configurations. J Phys Chem. 1984;88(25):6231–3.