Biopolym. Cell. 2006; 22(3):171-185.
Reviews
Ethapolan–microbial exopolysaccharide multifunctional assignment
1Pirog T. P., 1Korzh Yu. V.
  1. D. K. Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
    154, Academika Zabolotnogo Str., Kyiv, Ukraine, 03680

Abstract

The review summaries the data concerning the synthesis intensification, the regulation of physical and chemical properties and practical application of microbial exopolysaccharide (EPS) ethapolan (producer – Acinetobacter sp. B-7005). Ethapolan consist of the acylated (C10-C18 fatty acids) and non-acylated components, which are identical by the content of carbohydrates to pyruvic and glucuronic acids. The presence of fatty acids in this EPS composition causes the unique properties of the ethapolan solutions: ability to emulsify; to increase viscosity in presence of the cations, at low pH values and in Cu2+-glycin system. These properties determine practical ethapolan application in the oil, chemical, food industry and agriculture. The use of one tone of ethapolan in oil industry enables to obtain 240 tones of oil, in addition. The data were summarized concerning the technological parameters of this EPS biosynthesis on different carbon substrates (ethanol, carbohydrates, mixture of growth C2-C6-compounds), which allow decreasing the salts content in the producent cultivation medium 3–4 fold (to 2,95 g/l), to increase increasing the EPS quantity 2–5 fold and controlling simultaneously its composition and its physical and chemical properties necessary for a definite field of the ethapolan application.
Keywords: exopolysaccharides, ethapolan, intensification of synthesis, regulation of metabolism, physical and chemical properties, mixture of growth substrates

References

[1] Grinberg TA, Deryabin VV, Krasnopevtseva NV, Pirog TP, Bedrina EV, Stepanyuk VV, Malashenko YuR. Certain properties of polysaccharide synthesized by Acinetobacter sp. Mikrobiol Zh. 1987; 49(4):24-30.
[2] Grinberg TA, Pirog TP, Malashenko YuR, Pinchuk GE. Microbial synthesis of exopolysaccharides on CrC2-connections. K.: Naukova Dumka. 1992; 212 p.
[3] Bergey's manual of systematic bacteriology. 9 th ed. Bal­timore; London: Williams & Wilkins Co., 1984; Vol. 1. 945 p.
[4] Bouvet PJM, Grimont PAD. Taxonomy of the Genus Acinetobacter with the Recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and Emended Descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol.1986;36(2):228–40.
[5] Romanovskaia VA, Rokitko PV, Shilin SO, Malashenko IuR. [Actual problems of bacteria phylogenetic classification]. Mikrobiol Z. 2003;65(5):46-65.
[6] Grinberg TA, Pirog TP, Pinchuk GE, Buklova VN, Malashenko YuR. Change of composition and properties of exopolysaccharides synthesized by Acinetobacter sp. in the course of batch cultivation. Mikrobiologiia. 1994;63(6):1015-19.
[7] Pirog TP, Grinberg TA, Pinchuk GE, Senchenkova SYa, Malashenko YuR. Separation of exopolysaccharides synthesized by Acinetobacter sp. Into acetylated and nonacetylated components. Mikrobiologiia. 1994;63(5):840-6.
[8] Pirog TP. The regulation principles of composition and physico-chemical properties of exopolysaccharides synthesized by Acinetobacter sp..: Thesis. Dr. biol nauk. Kyiv, Inst Mikrobiol Virusol 1999. 450 p.
[9] Kochetkov NK, Byramova NE, Tsvetkov YuE, Backinovsky L V. Synthesis of the O-specific polysaccharide of Shigella flexneri. Tetrahedron. 1985;41(16):3363-75.
[10] Pirog TP, Kovalenko MA, Kuzminskaya YuV, Votselko SK. Physicochemical properties of the microbial exopolysaccharide ethapolan synthesized on a mixture of growth substrates. Mikrobiologiia. 2004;73(1):19-24.
[11] Pirog TP, Krasnopertseva IV, Grinverg TA., Vlasov SA, Vocelko CK, Malashenko YuR. Change some of the properties of exopolysaccharides Acinetobacter sp. in the batch culture. Biotekhnologiia. 1991;(4):67-70.
[12] Determann H. Gelchromatographie Gelfiltration Gelpermeation Molekulsieb. Ein Laboratoriumsbuch. Springer-Verlag Berlin-Heidelberg-New York 1967
[13] Votselko SK, Pirog TP, Malashenko YR, Grinberg TA. A method for determining the mass-molecular composition of microbial exopolysaccharides. Journal of Microbiological Methods. 1993;18(4):349–56.
[14] Elinov NP. Chemistry of microbial polysaccharides. M.: Vyshchaya Shkola, 1984; 254 p.
[15] Methods of carbohydrate chemistry. Ed. NK Kochetkov. M. Mir, 1967. 512 p.
[16] Zakharova IYa, Kosenko L. Methods for studying microbial polysaccharides. Kiev, Naukova Dumka, 1982; 192 p.
[17] Pat USA 4234689 IC3 C 12 P 19/04. Production of a-emulsans. D. L. Gutnick, E. Rosenberg, Y. Shabtai. Publ. 18.11.1980.
[18] Grinberg TA, Deryabin VV, Pirog TP, Malashenko YuR. Microbial synthesis of exopolysaccharides on SGS2- compounds. Prikl Biokhim Mikrobiol. 1990;26(4):445-55.
[19] Pirog TP, Senchenkova SN, Grinberg TA, Malashenko YuR. Structure of acylated exopolysaccharide, synthesized by Acinetobacter sp. Ukr Biokhim Zh. 2001; 73(3):71-9.
[20] Pirog TP, Malashenko IuR, Votselko SK. [A two-stage technique for producing the microbial exopolysaccaride ethapolan with improved rheological properties]. Prikl Biokhim Mikrobiol. 2001;37(4):429-35.
[21] Grinberg TA, Pirog TP, Buklova VN, Malashenko YuR. Interrelationship of microorganisms in an exopolysaccharide-synthesizing mixed culture. Mikrobiologiia. 1990;59(5):797-805.
[22] Grinberg TA, Pirog TP, Suprun SM, Buklova VN, Zakordonets LV, Malashenlo YuR. Microbe associations – producers of exopolysaccharides on ethanol. Mikrobiol Zh. 1990; 52(6):30-4.
[23] Meynell GG, Meynell E. Theory and Practice in Experimental Bacteriology. University Press Cambridg, 1965
[24] Malashenko YuR, Pirog TP, Grinberg TA, Pinchuk GE. Regulation of synthesis of exopolysaccharides by Acinetobacter sp. On the medium with ethanol. Mikrobiol Zh. 1993; 55(2):35-41.
[25] Pirog TP. Regulation of the synthesis of exopolysaccharides Asinetobacter sp. under ethanol; Thesis kand biol nauk. Kiev: In-t mikrobiologii i virusologii NAN Ukrainy, 1989; 189 p.
[26] Gotishlk G. Metabolism of bacteria. M., 1982; 310.
[27] Malashenko YuR, Sokolov IG, Romanovskaya VA. Microbial metabolism no growth substrates. K.: Naukova Dumka, 1987; 192 p.
[28] Pirog TP, Sokolov IG, Kuz'minskaia IuV, Malashenko IuR. [Peculiarities of ethanol metabolism in an Acinetobacter sp. mutant strain defective in exopolysaccharide synthesis]. Mikrobiologiia. 2002;71(2):222-9.
[29] Pirog TP, Kuz'minskaia IuV. [Regulation of acetate metabolism in a strain of Acinetobacter sp., growing on ethanol]. Prikl Biokhim Mikrobiol. 2003;39(2):180-8.
[30] Pirog TP, Kuzminskaya YuV. Some characteristics of central metabolism in Acinetobacter sp. Grown on ethanol. Mikrobiologiia. 2003;72(4):459-65.
[31] Pirog TP, Kovalenko MA, Kuz'minskaia IuV. [Exopolysaccharide production and peculiarities of C6-metabolism in Acinetobacter sp. grown on carbohydrate substrates]. Mikrobiologiia. 2002;71(2):215-21.
[32] Kovalenko MO. Synthesis of microbial exopolysaccharide ethapolan on the mixture of growth substrates.: Thesis. ... kand biol nauk. Kyiv: Inst mikrobiol Virusol NAS Ukraine, 2003; 136 p.
[33] Pirog TP, Kovalenko MA. Energy and biochemical aspects intensification etapolana exopolysaccharide synthesis in a mixture of ethanol and glucose. Intern. Conf. «Microbiology and Biotechnology of XXI century» (21—25 May2002). Minsk, 2002:56—57.
[34] Pirog TP, Kovalenko MA. The intensification of the synthesis of microbial exopolysaccharide etapolana on a mixture of unequal energy substrates. VIII Ukr Biokhim congr (Chernovtsi, 1—3 Oct 2002). Ukr Biokhim Zh. 2002;74, (4):74.
[35] Pirog TP, Kovalenko MA, Kuzminskaya YuV. Intensification of the exopolysaccharide synthesis by Acinetobacter sp. On an ethanol-glucose mixture: aspects related to biochemistry and bioenergetics. Mikrobiologiia. 2003;72(3):348-55.
[36] Pirog TP, Kovalenko MA, Kuzminskaya YuV, Krishtab TP. Enhanced synthesis of the exopolysaccharide ethapolan. Mikrobiologiia. 2003;72(1):26-32.
[37] Eggeling L, Sahm H. Enhanced utilization-rate of methanol during growth on a mixed substrate: A continuous culture study with Hansenula polymorpha. Arch Microbiol . 1981;130(5):362–5.
[38] Egli T, Kappeli O, Fiechter A. Regulatory flexibility of methylotrophic yeasts in chemostat cultures: Simultaneous assimilation of glucose and methanol at a fixed dilution rate. Arch Microbiol. 1982;131(1):1–7.
[39] Babel W, Muller RH. Mixed Substrate Utilization in Micro-organisms: Biochemical Aspects and Energetics. Microbiology. 1985;131(1):39–45.
[40] Pirog TP, Kovalenko MO. [Utilization of the mix of growth and nongrowth substrates by microorganisms]. Mikrobiol Z. 2004;66(6):80-100.
[41] Pirog TP, Kuzminskaya YuV, Kovalenko MA. Metabolism of C2-C6-substrates under mixotrophic growth of Acinetobacter sp. B-7005 and B-7005(1HG) Strains). Ukr Biokhim Zh. 2004; 76(1):33—8.
[42] Br?sen C, Sch?nheit P. Mechanisms of acetate formation and acetate activation in halophilic archaea. Arch Microbiol. 2001;175(5):360-8.
[43] De Virgilio C, B?rckert N, Barth G, Neuhaus JM, Boller T, Wiemken A. Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast. 1992;8(12):1043-51.
[44] Kumari S, Tishel R, Eisenbach M, Wolfe AJ. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol. 1995;177(10):2878-86.
[45] Korzh YuV, Pirog TP. Cr-regulation of metabolism in Acinetobacter sp. B-7005 - producer etapolan exopolysaccharide . Visn Odes Nats Univ (ser Biol). 2005:10(3):51-7.
[46] Sutherland IW. Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annu Rev Microbiol. 1985;39:243-70.
[47] Margaritis A, Pace GW. Microbial polysaccharides. Comprehens Biotechnol. Oxford, etc.: Pergamon press, 1985; Vol. 3:1005—44.
[48] Pirog TP, Kuzminskaya YuV. Influence of the producer cultivation conditions on synthesis, physical and chemical properties of exopolysaccharides. Biopolym Cell. 2003; 19(5):393-413.
[49] Pirog TP. Production of acylated exopolysaccharides in a batch culture of Acinetobacter sp. Mikrobiologiia. 1996; 65(5):644-48.
[50] Pirog TP, Grinberg TA, Senchenkova SYa, Malashenko YuR. Chemical composition of exopolysaccharides produced by Acinetobacter sp. On media with various K+ concentrations. Mikrobiologiia. 1996;65(4):527-32.
[51] Pirog TP, Grinberg TA, Buklova VN, Votselko SA, Malashenko YuR. Production of Acinetobacter sp. Exopolysaccharides in batch culture in the presence of different potassium concentrations. Mikrobiologiia. 1995; 64(1):51-4.
[52] Pirog TP. Effect of monovalent cations on the production of acylated exopolysaccharides by Acinetobacter sp. Mikrobiologiia. 1996; 65(5):639-43.
[53] Pirog TP. Role of Acinetobacter sp. Exopolysaccharides in protection against heavy metal ions. Mikrobiologiia. 1997;66(3):341-46.
[54] Pirog TP. Role of exopolysaccharides of Acinetobacter sp., synthesized under different cultivation conditions in protection of producer’s cells from the effect of Ba2+ and Zn2+. Mikrobiol Z. 1999; 61(5):64-71.
[55] Pirog TP. Biological functions of Acinetobacter sp. exopolysaccharides. Biopolym Cell. 1998; 14(2):136-43.
[56] Pirog TP, Grinberg TA, Malashenko YuR. Protective functions of exopolysaccharides produced by an Acinetobacter sp. Mikrobiologiia. 1997;66(3):335-40.
[57] Pirog TP, Grinberg TA, Malashenko YuR. Influence of environmental factors on the formation and properties of exopolysaccharides Acinetobacter sp. Prikl Biokhim Mikrobiol. 1998; 34(1): 70-74.
[58] Malashenko IuP, Romanovskaia VA, Sokolov IG, Grinberg TA, Pirog TP, Muchnik FV. [The biology of bacteria that assimilate C1--C2 compounds and the biotechnology aspects of their use]. Mikrobiol Z. 1998;60(6):38-55.
[59] Grinberg TA, Pirog TP, Malashenko YR, Vlasov SA. Ethapolan: a new microbial exopolysaccharide for oil industry. Energy & Fuels. 1995;9(6):1086–9.
[60] Drobot VI. The use of unconventional materials in the baking industry. Kiev: Urozhay, 1988; 152 p.
[61] Drobot VI, Arsen'eva LYu, Grinberg TA. Structural and mechanical properties of wheat dough and gluten using microbial polysaccharides. Izv. VUZov. Pishchevaya tekhnologiya. 1987: (5):53-6.
[62] Drobot VI, Grinberg TA. Effect of microbial exopolysaccharides for structural and mechanical characteristics of the dough. Third Symposium. soc.countr of Biotechnology (April 25-29, 1983): Proc. Bratislava 1983; 221.
[63] Kovalenko MO, Kovalenko OG, Pirog TP. Anti plant virus activity of native and deacylated drugs microbial exopolysaccharide etapolan. Visn Kyiv Nats Univ T Shevchenka. 2001; (35):32-5.
[64] AS 1726732 SSSR, MKI5 E 21 B 33/138. Isolation method influx of formation water. SA Vlasov, TA Grinberg, VV Deryabin, YuV Kapyrin, NV Krasnopevtceva, TP Pirog, YuR. Malashenko, OA Moskovtsev, AM Polischuk, AM Potapov. Publ. 15.04.1992.
[65] Pat. 2090847 Britain, IC3 C 12 P 19/04. A two-stage continuous process for the production of gelable exopolysac­ charide. Publ. 21.07.1982.
[66] Pat 0112661 Eur. Pat., IC3 C 12 P 19/04. Fermentation process for the production of polysaccharide. B. G. Tolbot, P. D. Brouing. Publ. 04.07.1984.
[67] Souw P, Demain AL. Nutritional Studies on Xanthan Production by Xanthomonas campestris NRRL B1459. Appl Environ Microbiol. 1979;37(6):1186-92.
[68] Gvozdyak RI, Matyshevskaya MS, Grigor'ev EF, Litvinchuk OA. Microbial polysaccharide xanthan. Kiev: Naukova Dumka, 1989; 212 p.