Biopolym. Cell. 2006; 22(1):75-81.
Analysis of distribution of mobile genetic elements within the human TP53 gene and its 5'-flanking region
1Pidpala O. V., 1Iatsyshyna A. P., 1Lukash L. L.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680


Computational analysis of distribution of mobile genetic elements within the human TP53 gene and its 5’-flanking region has been performed. There was no difference revealed for SINE and LINE repeats, but it has been shown that the LINE elements are preferentially present within the TP53 gene and the LINE2 elements are preferentially distributed within 5’-flanking region of the TP53 gene. Alu repeats have been found to be the most common repeats within the TP53 gene and its 5’-flanking region. LTR repeats have been absent at all and DNA transposons have been determined only within the TP53 gene. It has been revealed that mobile genetic elements within TP53 gene and its 5’-flanking region preferentially form clusters, which contain mobile genetic elements from different repeat families and subfamilies
Keywords: human TP53 gene, mobile genetic elements, Alu repeats, mosaic cluster structures


[1] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, et al International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860-921.
[2] Eukaryotic transposable elements as mutagenic agent. Eds M. E. Lambert, J. F. McDonald, J. B. Weinstein. New York: Cold Spring Harbor Lab. press, 1988. 345 p.
[3] Gergiev PG. Role of mobile elements in mutagenesis induced by chemical and physical agents: Author Thesis. ... kand biol nauk. M.: IMB AN SSSR, 1991. 24 p.
[4] Kazazian HH Jr. Mobile elements and disease. Curr Opin Genet Dev. 1998;8(3):343-50.
[5] Khesin RB. Genome instability. Moscow, Nauka, 1984; 472 p.
[6] Mobile DNA. Eds D. E. Berg, M. M. Howe. Washington: Amer. Soc. Microbiol, publ., 1989. 972 p.
[7] Ratner VA, Vasileva LA. Mobile genetic elements (MGE), "selfish DNA" or a functional part of the genome ?. Modern concepts of evolutionary genetics. Eds. BK. Shumny, AL MArkel. Novosibirsk: Izd Inst cytol Genet SO RAS, 2000: 128-150.
[8] Shapiro JA. Repetitive DNA, genome system architecture and genome reorganization. Res Microbiol. 2002;153(7):447-53.
[9] McClintock B. The significance of responses of the genome to challenge. Science. 1984;226(4676):792-801.
[10] Fedoroff N, Botstein D. The dynamic genome: Barbara McClintock's ideas in the century of genetics. New York.: Cold Spring Harbor Lab. press, 1992. 422 p.
[11] Capy P, Gasperi G, Bi?mont C, Bazin C. Stress and transposable elements: co-evolution or useful parasites? Heredity (Edinb). 2000;85 ( Pt 2):101-6.
[12] Fedoroff NV. Transposable elements as a molecular evolution­ary force. Ann New York Acad. Sci. 2002;981:154—188.
[13] Britten RJ. DNA sequence insertion and evolutionary variation in gene regulation. Proc Natl Acad Sci U S A. 1996;93(18):9374-7.
[14] Kidwell MG, Lisch D. Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci U S A. 1997;94(15):7704-11.
[15] Jordan IK, Rogozin IB, Glazko GV, Koonin EV. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 2003;19(2):68-72.
[16] Britten RJ. Mobile elements inserted in the distant past have taken on important functions. Gene. 1997;205(1-2):177-82.
[17] Brosius J. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene. 1999;238(1):115-34.
[18] van de Lagemaat LN, Landry JR, Mager DL, Medstrand P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 2003;19(10):530-6.
[19] Nekrutenko A, Li WH. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 2001;17(11):619-21.
[20] Hon LS, Jain AN. Compositional structure of repetitive elements is quantitatively related to co-expression of gene pairs. J Mol Biol. 2003;332(2):305-10.
[21] Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253(5015):49-53.
[22] Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature. 1991;351(6326):453-6.
[23] Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15-6.
[24] Bargonetti J, Manfredi JJ. Multiple roles of the tumor suppressor p53. Curr Opin Oncol. 2002;14(1):86-91.
[25] Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003;22(56):9030-40.
[26] Futreal PA, Barrett JC, Wiseman RW. An Alu polymorphism intragenic to the TP53 gene. Nucleic Acids Res. 1991;19(24):6977.
[27] Fu L, Ma W, Benchimol S. A translation repressor element resides in the 3' untranslated region of human p53 mRNA. Oncogene. 1999;18(47):6419-24.
[28] Shakhmuradov IA, Kolchanov NA, Kapitonov VV. [Distribution of Alu repeats along the human genome: formation of clusters and features of insertion regions]. Mol Biol (Mosk). 1989;23(2):526-36.
[29] Pavl?cek A, Jabbari K, Paces J, Paces V, Hejnar JV, Bernardi G. Similar integration but different stability of Alus and LINEs in the human genome. Gene. 2001;276(1-2):39-45.
[30] Jurka J, Krnjajic M, Kapitonov VV, Stenger JE, Kokhanyy O. Active Alu elements are passed primarily through paternal germlines. Theor Popul Biol. 2002;61(4):519-30.
[31] Toda Y, Tomita M. Alu elements as an aid in deciphering genome rearrangements. Gene. 1997;205(1-2):173-6.
[32] Kulski JK, Gaudieri S, Bellgard M, Balmer L, Giles K, Inoko H, Dawkins RL. The evolution of MHC diversity by segmental duplication and transposition of retroelements. J Mol Evol. 1997;45(6):599-609.
[33] Jurka J, Kohany O, Pavlicek A, Kapitonov VV, Jurka MV. Duplication, coclustering, and selection of human Alu retrotransposons. Proc Natl Acad Sci U S A. 2004;101(5):1268-72.
[34] Kolomietz E, Meyn MS, Pandita A, Squire JA. The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer. 2002;35(2):97-112.
[35] Ory K, Legros Y, Auguin C, Soussi T. Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J. 1994;13(15):3496-504.
[36] Slebos RJ, Resnick MA, Taylor JA. Inactivation of the p53 tumor suppressor gene via a novel Alu rearrangement. Cancer Res. 1998;58(23):5333-6.
[37] Bougeard G, Brugi?res L, Chompret A, Gesta P, Charbonnier F, Valent A, Martin C, Raux G, Feunteun J, Bressac-de Paillerets B, Fr?bourg T. Screening for TP53 rearrangements in families with the Li-Fraumeni syndrome reveals a complete deletion of the TP53 gene. Oncogene. 2003;22(6):840-6.
[38] Ratner VA, Vasil'eva LA. [The role of mobile genetic elements (MGE) in microevolution]. Genetika. 1992;28(12):5-17.
[39] Vansant G, Reynolds WF. The consensus sequence of a major Alu subfamily contains a functional retinoic acid response element. Proc Natl Acad Sci U S A. 1995;92(18):8229-33.
[40] Babich V, Aksenov N, Alexeenko V, Oei SL, Buchlow G, Tomilin N. Association of some potential hormone response elements in human genes with the Alu family repeats. Gene. 1999;239(2):341-9.
[41] Aronow BJ, Silbiger RN, Dusing MR, Stock JL, Yager KL, Potter SS, Hutton JJ, Wiginton DA. Functional analysis of the human adenosine deaminase gene thymic regulatory region and its ability to generate position-independent transgene expression. Mol Cell Biol. 1992;12(9):4170-85.
[42] Tomilin NV, Iguchi-Ariga SM, Ariga H. Transcription and replication silencer element is present within conserved region of human Alu repeats interacting with nuclear protein. FEBS Lett. 1990;263(1):69-72.
[43] Sell C, Chang CD, Koniecki J, Chen HM, Baserga R. A cryptopromoter is activated in the proliferating cell nuclear antigen gene of growth arrested cells. J Cell Physiol. 1992;152(1):177-84.
[44] Svineng G, F?ssler R, Johansson S. Identification of beta1C-2, a novel variant of the integrin beta1 subunit generated by utilization of an alternative splice acceptor site in exon C. Biochem J. 1998;330 (Pt 3):1255-63.
[45] Neznanov NS, Oshima RG. cis regulation of the keratin 18 gene in transgenic mice. Mol Cell Biol. 1993;13(3):1815-23.
[46] Chu WM, Ballard R, Carpick BW, Williams BR, Schmid CW. Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol Cell Biol. 1998;18(1):58-68.
[47] Blinov VM, Resenchuk SM, Uvarov DL, Chirikova GB, Denisov SI, Kiselev LL. [Alu elements in human genome. Invariant secondary structure of left and right monomers]. Mol Biol (Mosk). 1998;32(1):84-92.
[48] Blinov VM, Denisov SI, Saraev DV, Shvetsov DV, Uvarov DL, Oparina NIu, Sandakhchiev LS, Kiselev LL. [Structural organization of the human genome: distribution of nucleotides, Alu-repeats and exons in chromosomes 21 and 22]. Mol Biol (Mosk). 2001;35(6):1032-8.
[49] Smit AF, Riggs AD. MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res. 1995;23(1):98-102.
[50] Harendza CJ, Johnson LF. Polyadenylylation signal of the mouse thymidylate synthase gene was created by insertion of an L1 repetitive element downstream of the open reading frame. Proc Natl Acad Sci U S A. 1990;87(7):2531-5. PubMed PMID: 8650306.
[51] Schmid CW. Alu: structure, origin, evolution, significance and function of one-tenth of human DNA. Prog Nucleic Acid Res Mol Biol. 1996;53:283-319.
[52] Heller H, K?mmer C, Wilgenbus P, Doerfler W. Chromosomal insertion of foreign (adenovirus type 12, plasmid, or bacteriophage lambda) DNA is associated with enhanced methylation of cellular DNA segments. Proc Natl Acad Sci U S A. 1995;92(12):5515-9.
[53] Cox GS, Gutkin DW, Haas MJ, Cosgrove DE. Isolation of an Alu repetitive DNA binding protein and effect of CpG methylation on binding to its recognition sequence. Biochim Biophys Acta. 1998;1396(1):67-87.