Biopolym. Cell. 2006; 22(1):3-17.
Selenium and yeast: genetic mechanisms of the yeast tolerance to selenium compounds and their analogs
1Stenchuk M. M., 1, 2Chaban L. B., 1, 2Gonchar M. V.
  1. Institute of Cell Biology, NAS of Ukraine
    14/16, Drahomanov Str., Lviv, Ukraine, 79005
  2. Ivan Franko National University of L'viv
    4, Hrushevskoho Str., Lviv, Ukraine, 79005


Selenium (Se) and its compounds have toxic and carcinogenic effect on animal and human beings, but in small concentrations this microelement is essential for life. Therefore, it is important to establish the molecular basis of Se toxicity and cell resistance to this metaloid. Many investigations of this problem have been carried out on bacteria. Genetic approaches, available for the yeasts, made these eukaryotic microorganisms, especially S. cerevisiae, a convenient model for the investigation of molecular mechanisms of Se tolerance. This review summarizes the knowledge of genetic mechanisms involved in Se tolerance in yeasts.
Keywords: yeast, selenium, tolerance


[1] Nakamuro K, Okuno T, Hasegawa T. Metabolism of Selenoamino Acids and Contribution of Selenium Methylation to Their Toxicity. J Health Sci. 2000;46(6):418–21.
[2] Lobinski R, Edmonds JS, Suzuki KT, Uden PC. Species-selective determination of selenium compounds in biological materials (Technical Report). Pure Appl Chem. 2000;72(3):447-61
[3] Tam?s MJ, Wysocki R. Mechanisms involved in metalloid transport and tolerance acquisition. Curr Genet. 2001;40(1):2-12.
[4] [].
[5] Birringer M, Pilawa S, Floh? L. Trends in selenium biochemistry. Nat Prod Rep. 2002;19(6):693-718.
[6] Schrauzer GN. Anticarcinogenic effects of selenium. Cell Mol Life Sci. 2000;57(13-14):1864-73.
[7] K?hrl J, Brigelius-Floh? R, B?ck A, G?rtner R, Meyer O, Floh? L. Selenium in biology: facts and medical perspectives. Biol Chem. 2000;381(9-10):849-64.
[8] Boles JO, Cisneros RJ, Weir MS, Odom JD, Villafranca JE, Dunlap RB. Purification and characterization of selenomethionyl thymidylate synthase from Escherichia coli: comparison with the wild-type enzyme. Biochemistry. 1991;30(46):11073-80.
[9] Bernard AR, Wells TN, Cleasby A, Borlat F, Payton MA, Proudfoot AE. Selenomethionine labelling of phosphomannose isomerase changes its kinetic properties. Eur J Biochem. 1995;230(1):111-8.
[10] Huber RE, Criddle RS. The isolation and properties of beta-galactosidase from Escherichia coli grown on sodium selenate. Biochim Biophys Acta. 1967;141(3):587-99.
[11] Ip C. Lessons from basic research in selenium and cancer prevention. J Nutr. 1998;128(11):1845-54.
[12] Snityns'ky? VV, Antoniak HL. [Biochemical role of selenium]. Ukr Biokhim Zh. 1994;66(5):3-16.
[13] Fu LH, Wang XF, Eyal Y, She YM, Donald LJ, Standing KG, Ben-Hayyim G. A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii gluththione peroxidase. J Biol Chem. 2002;277(29):25983-91.
[14] Golubev VI, Golubev NV. [Selenium tolerance of yeasts]. Mikrobiologiia. 2002;71(4):455-9.
[15] Pinson B, Sagot I, Daignan-Fornier B. Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae. Mol Microbiol. 2000;36(3):679-87.
[16] Chaban L, Pokrovetska O, Stentchuk M, Gonchar M. Getting and physiological characteristics of selenite-resistant mutants of Pichia guilliermondii. Visn Lviv Univ (Biol Ser). 2003; (34):92-9.
[17] McKeehan WL, Hamilton WG, Ham RG. Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc Natl Acad Sci U S A. 1976;73(6):2023-7.
[18] Turner RJ, Weiner JH, Taylor DE. Selenium metabolism in Escherichia coli. Biometals. 1998;11(3):223-7.
[19] Kramer GF, Ames BN. Mechanisms of mutagenicity and toxicity of sodium selenite (Na2SeO3) in Salmonella typhimurium. Mutat Res. 1988;201(1):169-80.
[20] Reshetnikova IA, Petrikevich SB. [Luminescence microscopic detection of selenium in Candida tropicalis yeasts]. Mikrobiologiia. 1974;43(1):159-61.
[21] Reshetnikova IA, Petrikevich SB. [Electron microscopic study of Candida tropicalis yeasts grown on a medium containing selenium]. Mikrobiologiia. 1975;44(3):556-8.
[22] Gharieb MM, Gadd GM. Evidence for the involvement of vacuolar activity in metal(loid) tolerance: vacuolar-lacking and -defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. Biometals. 1998;11(2):101-6.
[23] Chaban JL, Stenchuk M, Gonchar M. Genetic analysis of selenite-resistant mutants of the yeast Pichia guilliermondii. 1st Ukr. Congr. Cell Biol. (Lviv, April 25-28, 2004): Abstract. Lviv, 2004: 376.
[24] Suhajda A, Heg?czki J, Janzs? B, Pais I, Vereczkey G. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J Trace Elem Med Biol. 2000;14(1):43-7. PubMed PMID: 11966899.
[25] Ponce de Le?n CA, Bay?n MM, Paquin C, Caruso JA. Selenium incorporation into Saccharomyces cerevisiae cells: a study of different incorporation methods. J Appl Microbiol. 2002;92(4):602-10.
[26] Demirci A, Pometto AL 3rd. Production of organically bound selenium yeast by continuous fermentation. J Agric Food Chem. 1999;47(6):2491-5.
[27] Demirci A, Pometto AL 3rd, Cox DJ. Enhanced organically bound selenium yeast production by fed-batch fermentation. J Agric Food Chem. 1999;47(6):2496-500.
[28] Kotrebai M, Birringer M, Tyson JF, Block E, Uden PC. Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst. 2000;125(1):71-8.
[29] Bansal MP, Kaur T. Growth characteristics and selenium status changes of yeast cells with inorganic and organic selenium supplementation: selenium, a chemopreventive agent. J Med Food. 2002 Summer;5(2):85-90.
[30] Yoshida M, Fukunaga K, Tsuchita H, Yasumoto K. An evaluation of the bioavailability of selenium in high-selenium yeast. J Nutr Sci Vitaminol (Tokyo). 1999;45(1):119-28.
[31] Ortman K, Pehrson B. Selenite and selenium yeast as feed supplements to growing fattening pigs. Zentralbl Veterinarmed A. 1998;45(9):551-7.
[32] Ortman K, Pehrson B. Selenite and selenium yeast as feed supplements for dairy cows. Zentralbl Veterinarmed A. 1997;44(6):373-80.
[33] Ortman K, Pehrson B. Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast. J Anim Sci. 1999;77(12):3365-70.
[34] Knowles SO, Grace ND, Wurms K, Lee J. Significance of amount and form of dietary selenium on blood, milk, and casein selenium concentrations in grazing cows. J Dairy Sci. 1999;82(2):429-37.
[35] Rock MJ, Kincaid RL, Carstens GE. Effects of prenatal source and level of dietary selenium on passive immunity and thermometabolism of newborn lambs. Small Rumin Res. 2001;40(2):129-138.
[36] Bogye G, Alfthan G, Machay T. Bioavailability of enteral yeast-selenium in preterm infants. Biol Trace Elem Res. 1998;65(2):143-51.
[37] Bogye G, Alfthan G, Machay T, Zubovics L. Enteral yeast-selenium supplementation in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1998;78(3):F225-6.
[38] Seo YR, Kelley MR, Smith ML. Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc Natl Acad Sci U S A. 2002;99(22):14548-53.
[39] Whanger PD. Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr. 2002;21(3):223-32.
[40] Lu J, Jiang C, Kaeck M, Ganther H, Vadhanavikit S, Ip C, Thompson H. Dissociation of the genotoxic and growth inhibitory effects of selenium. Biochem Pharmacol. 1995;50(2):213-9.
[41] Sinha R, Said TK, Medina D. Organic and inorganic selenium compounds inhibit mouse mammary cell growth in vitro by different cellular pathways. Cancer Lett. 1996;107(2):277-84.
[42] Alaejos MS, D?az Romero FJ, D?az Romero C. Selenium and cancer: some nutritional aspects. Nutrition. 2000;16(5):376-83.
[43] Rosin MP. Inhibition of spontaneous mutagenesis in yeast cultures by selenite, selenate and selenide. Cancer Lett. 1981;13(1):7-14.
[44] Anjaria KB, Madhvanath U. Genotoxicity of selenite in diploid yeast. Mutat Res. 1988;204(4):605-14.
[45] Bronzetti G, Cini M, Andreoli E, Caltavuturo L, Panunzio M, Croce CD. Protective effects of vitamins and selenium compounds in yeast. Mutat Res. 2001;496(1-2):105-15.
[46] Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y. Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics. 1997;145(3):627-35.
[47] Breton A, Surdin-Kerjan Y. Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol. 1977;132(1):224-32.
[48] Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT. Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U S A. 1995;92(20):9373-7.
[49] Simonics T, B?nszky L, Mar?z A. Genetics of sulphate assimilation in Schizosaccharomyces pombe (a short review). Acta Microbiol Immunol Hung. 2002;49(2-3):279-83.
[50] B?nszky L, Simonics T, Mar?z A. Sulphate metabolism of selenate-resistant Schizosaccharomyces pombe mutants. J Gen Appl Microbiol. 2003;49(5):271-8.
[51] Casalone E, Colella CM, Ricci F, Polsinelli M. Isolation and characterization of Saccharomyces cerevisiae mutants resistant to sulfate. Yeast. 1989; 5(Spec):287-91.
[52] Casalone E, Colella CM, Daly S, Gallori E, Moriani L, Polsinelli M. Mechanism of resistance to sulphite in Saccharomyces cerevisiae. Curr Genet. 1992;22(6):435-40.
[53] Casalone E, Colella CM, Daly S, Fontana S, Torricelli I, Polsinelli M. Cloning and characterization of a sulphite-resistance gene of Saccharomyces cerevisiae. Yeast. 1994;10(8):1101-10.
[54] Breitwieser W, Price C, Schuster T. Identification of a gene encoding a novel zinc finger protein in Saccharomyces cerevisiae. Yeast. 1993;9(5):551-6.
[55] Xu X, Wightman JD, Geller BL, Avram D, Bakalinsky AT. Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr Genet. 1994;25(6):488-96.
[56] Avram D, Bakalinsky AT. Multicopy FZF1 (SUL1) suppresses the sulfite sensitivity but not the glucose derepression or aberrant cell morphology of a grr1 mutant of Saccharomyces cerevisiae. Genetics. 1996;144(2):511-21.
[57] Park H, Bakalinsky AT. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast. 2000;16(10):881-8.
[58] Park H, Lopez NI, Bakalinsky AT. Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker. Curr Genet. 1999;36(6):339-44.
[59] S?-Correia I, Tenreiro S. The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. J Biotechnol. 2002;98(2-3):215-26.
[60] Jelinsky SA, Samson LD. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A. 1999;96(4):1486-91.
[61] Flick JS, Johnston M. GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol Cell Biol. 1991;11(10):5101-12.
[62] 62. Stratford M, Morgan P, Rose AH. Sulphur dioxide resistance in Saccharomyces cerevisiae and Saccharomycodes ludwigii. Microbiol. 1987;133(8):2173–9.
[63] Bakalinsky AT, Snow R. The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast. 1990;6(5):367-82.
[64] Cod?n AC, Gasent-Ram?rez JM, Ben?tez T. Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker's yeasts. Appl Environ Microbiol. 1995;61(2):630-8.
[65] Bidenne C, Blondin B, Dequin S, Vezinhet F. Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. Curr Genet. 1992;22(1):1-7.
[66] Rachidi N, Barre P, Blondin B. Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae. Mol Gen Genet. 1999;261(4-5):841-50.
[67] Puig S, Querol A, Barrio E, P?rez-Ort?n JE. Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol. 2000;66(5):2057-61.
[68] Goto-Yamamoto N, Kitano K, Shiki K, Yoshida Y, Suzuki T, Iwata T, et al. SSU1-R, a sulfite resistance gene of wine yeast, is an allele of SSU1 with a different upstream sequence. J Ferment Bioeng. 1998;86(5):427–33.
[69] P?rez-Ort?n JE, Querol A, Puig S, Barrio E. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res. 2002;12(10):1533-9.
[70] Haugen AC, Kelley R, Collins JB, Tucker CJ, Deng C, Afshari CA, Brown JM, Ideker T, Van Houten B. Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol. 2004;5(12):R95.