Biopolym. Cell. 2005; 21(6):536-547.
Bioorganic Chemistry
Local structure for the HIV-1 gp120 V3 loop. Comparative analysis of the fragment conformations in HIV-MN and HIV-Thailand isolates
1Andrianov A. M.
  1. Institute of Bioorganic Chemistry, NAS of Belarus
    5/2, Kuprevich Str., Minsk, Republic of Belarus, 220141

Abstract

Secondary structure elements and conformations of irregular stretches for the HIV-MN gp120 V3 loop, comprising the virus immunogenic crown as well as the sites liable for cell tropism and cell fusion, were defined using the theoretical method developed previously. Computations based on the published data of NMR spectroscopy in water point out that the V3 loop N-terminal segment exhibits the extended site 1–14 separated by a double (β-turn 15–20 from its unordered C-terminal region 21–35. Collating the conformation obtained with the one derived earlier for the Thailand HIV-1 gp120 V3 loop indicates that the differences in their local structures are statistically significant. Despite the essential structures divergence, fourteen amino acids of the stretch under consideration, seven of which reside in its functionally active sites, were shown to preserve their conformational states in the MN and Thailand HIV-1 isolates. The residues keeping their conformations can be considered as the potential targets for the protein engineering methods used in the studies on developing the antiviral agents.
Keywords: human immunodeficiency virus, protein gp120, V3 loop, conformational analysis, NMR spectroscopy, local structure.

References

[1] Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem. 1990;265(18):10373-82.
[2] LaRosa GJ, Davide JP, Weinhold K, Waterbury JA, Profy AT, Lewis JA, Langlois AJ, Dreesman GR, Boswell RN, Shadduck P, et al. Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science. 1990;249(4971):932-5.
[3] Skinner MA, Langlois AJ, McDanal CB, McDougal JS, Bolognesi DP, Matthews TJ. Neutralizing antibodies to an immunodominant envelope sequence do not prevent gp120 binding to CD4. J Virol. 1988;62(11):4195-200.
[4] Javaherian K, Langlois AJ, LaRosa GJ, Profy AT, Bolognesi DP, Herlihy WC, Putney SD, Matthews TJ. Broadly neutralizing antibodies elicited by the hypervariable neutralizing determinant of HIV-1. Science. 1990;250(4987):1590-3.
[5] Rusche JR, Javaherian K, McDanal C, Petro J, Lynn DL, Grimaila R, Langlois A, Gallo RC, Arthur LO, Fischinger PJ, et al. Antibodies that inhibit fusion of human immunodeficiency virus-infected cells bind a 24-amino acid sequence of the viral envelope, gp120. Proc Natl Acad Sci U S A. 1988;85(9):3198-202.
[6] Schreiber M, Wachsmuth C, M?ller H, Odemuyiwa S, Schmitz H, Meyer S, Meyer B, Schneider-Mergener J. The V3-directed immune response in natural human immunodeficiency virus type 1 infection is predominantly directed against a variable, discontinuous epitope presented by the gp120 V3 domain. J Virol. 1997;71(12):9198-205.
[7] Gorny MK, Xu JY, Karwowska S, Buchbinder A, Zolla-Pazner S. Repertoire of neutralizing human monoclonal antibodies specific for the V3 domain of HIV-1 gp120. J Immunol. 1993;150(2):635-43.
[8] Javaherian K, Langlois AJ, McDanal C, Ross KL, Eckler LI, Jellis CL, Profy AT, Rusche JR, Bolognesi DP, Putney SD, et al. Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein. Proc Natl Acad Sci U S A. 1989;86(17):6768-72.
[9] Wu L, Gerard NP, Wyatt R, Choe H, Parolin C, Ruffing N, Borsetti A, Cardoso AA, Desjardin E, Newman W, Gerard C, Sodroski J. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature. 1996;384(6605):179-83.
[10] Trkola A, Dragic T, Arthos J, Binley JM, Olson WC, Allaway GP, Cheng-Mayer C, Robinson J, Maddon PJ, Moore JP. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature. 1996;384(6605):184-7.
[11] Dettin M, Ferranti P, Scarinci C, Picariello G, Di Bello C. Is the V3 loop involved in HIV binding to CD4? Biochemistry. 2003;42(30):9007-12.
[12] Chavda SC, Griffin P, Han-Liu Z, Keys B, Vekony MA, Cann AJ. Molecular determinants of the V3 loop of human immunodeficiency virus type 1 glycoprotein gp120 responsible for controlling cell tropism. J Gen Virol. 1994;75 (Pt 11):3249-53.
[13] Mammano F, Salvatori F, Ometto L, Panozzo M, Chieco-Bianchi L, De Rossi A. Relationship between the V3 loop and the phenotypes of human immunodeficiency virus type 1 (HIV-1) isolates from children perinatally infected with HIV-1. J Virol. 1995;69(1):82-92.
[14] Milich L, Margolin B, Swanstrom R. V3 loop of the human immunodeficiency virus type 1 Env protein: interpreting sequence variability. J Virol. 1993;67(9):5623-34.
[15] Shioda T, Levy JA, Cheng-Mayer C. Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage tropism of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1992;89(20):9434-8.
[16] Yamashita A, Yamamoto N, Matsuda J, Koyanagi Y. Cell type-specific heterogeneity of the HIV-1 V3 loop in infected individuals: selection of virus in macrophages and plasma. Virology. 1994;204(1):170-9.
[17] Goudsmit J, Debouck C, Meloen RH, Smit L, Bakker M, Asher DM, Wolff AV, Gibbs CJ Jr, Gajdusek DC. Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees. Proc Natl Acad Sci U S A. 1988;85(12):4478-82.
[18] Clements GJ, Price-Jones MJ, Stephens PE, Sutton C, Schulz TF, Clapham PR, McKeating JA, McClure MO, Thomson S, Marsh M, et al. The V3 loops of the HIV-1 and HIV-2 surface glycoproteins contain proteolytic cleavage sites: a possible function in viral fusion? AIDS Res Hum Retroviruses. 1991;7(1):3-16.
[19] Callebaut C, Krust B, Jacotot E, Hovanessian AG. T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells. Science. 1993;262(5142):2045-50.
[20] Di Bello C, Pasquato A, Dettin M. Synthetic peptides for AIDS research. Curr Protein Pept Sci. 2004;5(4):225-34.
[21] Ling H, Usami O, Xiao P, Gu HX, Hattori T. The N-terminal of the V3 loop in HIV type 1 gp120 is responsible for its conformation-dependent interaction with cell surface molecules. AIDS Res Hum Retroviruses. 2004;20(2):213-8.
[22] Gorny MK, Revesz K, Williams C, Volsky B, Louder MK, Anyangwe CA, Krachmarov C, Kayman SC, Pinter A, Nadas A, Nyambi PN, Mascola JR, Zolla-Pazner S. The v3 loop is accessible on the surface of most human immunodeficiency virus type 1 primary isolates and serves as a neutralization epitope. J Virol. 2004;78(5):2394-404.
[23] Yang ZY, Chakrabarti BK, Xu L, Welcher B, Kong WP, Leung K, Panet A, Mascola JR, Nabel GJ. Selective modification of variable loops alters tropism and enhances immunogenicity of human immunodeficiency virus type 1 envelope. J Virol. 2004;78(8):4029-36.
[24] Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998;393(6686):648-59.
[25] Rini JM, Stanfield RL, Stura EA, Salinas PA, Profy AT, Wilson IA. Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50.1, in complex with its V3 loop peptide antigen. Proc Natl Acad Sci U S A. 1993;90(13):6325-9.
[26] Ghiara JB, Stura EA, Stanfield RL, Profy AT, Wilson IA. Crystal structure of the principal neutralization site of HIV-1. Science. 1994;264(5155):82-5.
[27] Ghiara JB, Ferguson DC, Satterthwait AC, Dyson HJ, Wilson IA. Structure-based design of a constrained peptide mimic of the HIV-1 V3 loop neutralization site. J Mol Biol. 1997;266(1):31-9.
[28] Stanfield R, Cabezas E, Satterthwait A, Stura E, Profy A, Wilson I. Dual conformations for the HIV-1 gp120 V3 loop in complexes with different neutralizing fabs. Structure. 1999;7(2):131-42.
[29] Stanfield RL, Ghiara JB, Ollmann Saphire E, Profy AT, Wilson IA. Recurring conformation of the human immunodeficiency virus type 1 gp120 V3 loop. Virology. 2003;315(1):159-73.
[30] Stanfield RL, Gorny MK, Williams C, Zolla-Pazner S, Wilson IA. Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447-52D. Structure. 2004;12(2):193-204.
[31] Ding J, Smith AD, Geisler SC, Ma X, Arnold GF, Arnold E. Crystal structure of a human rhinovirus that displays part of the HIV-1 V3 loop and induces neutralizing antibodies against HIV-1. Structure. 2002;10(7):999-1011.
[32] Catasti P, Fontenot JD, Bradbury EM, Gupta G. Local and global structural properties of the HIV-MN V3 loop. J Biol Chem. 1995;270(5):2224-32.
[33] Gupta G, Anantharamaiah GM, Scott DR, Eldridge JH, Myers G. Solution structure of the V3 loop of a Thailand HIV isolate. J Biomol Struct Dyn. 1993;11(2):345-66.
[34] Chandrasekhar K, Profy AT, Dyson HJ. Solution conformational preferences of immunogenic peptides derived from the principal neutralizing determinant of the HIV-1 envelope glycoprotein gp120. Biochemistry. 1991;30(38):9187-94.
[35] Vu HM, de Lorimier R, Moody MA, Haynes BF, Spicer LD. Conformational preferences of a chimeric peptide HIV-1 immunogen from the C4-V3 domains of gp120 envelope protein of HIV-1 CAN0A based on solution NMR: comparison to a related immunogenic peptide from HIV-1 RF. Biochemistry. 1996;35(16):5158-65.
[36] Vranken WF, Budesinsky M, Martins JC, Fant F, Boulez K, Gras-Masse H, Borremans FA. Conformational features of a synthetic cyclic peptide corresponding to the complete V3 loop of the RF HIV-1 strain in water and water/trifluoroethanol solutions. Eur J Biochem. 1996;236(1):100-8.
[37] Sarma AV, Raju TV, Kunwar AC. NMR study of the peptide present in the principal neutralizing determinant (PND) of HIV-1 envelope glycoprotein gp120. J Biochem Biophys Methods. 1997;34(2):83-98.
[38] Tolman RL, Bednarek MA, Johnson BA, Leanza WJ, Marburg S, Underwood DJ, Emini EA, Conley AJ. Cyclic V3-loop-related HIV-1 conjugate vaccines. Synthesis, conformation and immunological properties. Int J Pept Protein Res. 1993;41(5):455-66.
[39] Jelinek R, Terry TD, Gesell JJ, Malik P, Perham RN, Opella SJ. NMR structure of the principal neutralizing determinant of HIV-1 displayed in filamentous bacteriophage coat protein. J Mol Biol. 1997;266(4):649-55.
[40] Andrianov AM. Model of the three dimensional structure of the protein immunodominant epitope gpl20 HIV-MN. Vesci NAN Belarusi, ser khim navuk. 2003; 1:68-75.
[41] Andrianov AM, Sokolov YuA. Immunoreactive conformation of the immunodominant epitope HIV-MN. Vesci NAN Belarusi, ser khim navuk. 2003; 3:88-94.
[42] Andrianov AM, Sokolov YA. 3D Structure Model of the Principal Neutralizing Epitope of Minnesota HIV-1 Isolate. J Biomol Struct Dyn. 2004;21(4):577–90.
[43] Andrianov AM. Local structural properties of the V3 loop of Thailand HIV-1 isolate. J Biomol Struct Dyn. 2002;19(6):973-89.
[44] Sherman SA, Andrianov AM, Akhrem AA. Method of determining protein conformations by the two-dimensional nuclear Overhauser enhancement spectroscopy data. J Biomol Struct Dyn. 1987;4(5):869-84.
[45] W?thrich K, Wider G, Wagner G, Braun W. Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. J Mol Biol. 1982;155(3):311-9.
[46] Smith LJ, Bolin KA, Schwalbe H, MacArthur MW, Thornton JM, Dobson CM. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol. 1996;255(3):494-506.
[47] Lewis PN, Momany FA, Scheraga HA. Chain reversals in proteins. Biochim Biophys Acta. 1973;303(2):211-29.
[48] Milner-White E, Ross BM, Ismail R, Belhadj-Mostefa K, Poet R. One type of gamma-turn, rather than the other gives rise to chain-reversal in proteins. J Mol Biol. 1988;204(3):777-82.
[49] Sherman SA, Andrianov AM, Akhrem AA. Conformational analysis and the establishment of the spatial structure of protein molecules. Minsk : Nauka i tekhnika, 1989. 240 p.
[50] Sherman SA, Johnson ME. Derivation of locally accurate spatial protein structure from NMR data. Prog Biophys Mol Biol. 1993;59(3):285-339.
[51] Kar L, Sherman SA, Johnson ME. Comparison of protein structures in solution using local conformations derived from NMR data: application to cytochrome c. J Biomol Struct Dyn. 1994;12(3):527-58.
[52] Hudson DJ. Lectures on Elementary Statistics and Probability. CERN, European Organization for Nuclear Research, 1964
[53] Andrianov AM, Sokalov YA. Structure and polymorphism of the principal neutralization site of Thailand HIV-1 isolate. J Biomol Struct Dyn. 2003;20(4):603-13.
[54] W?thrich K, Billeter M, Braun W. Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. J Mol Biol. 1984;180(3):715-40.
[55] Andrianov A. M. Structure and polymorphism of the HIV-1 principal neutralizing epitope. Proc. Fours Int. Conf. on Bioinform. of Genome Regulation and Structure (Novosibirsk, Russia). Novosibirsk, 2004. Vol. 1: 235-238.
[56] Andrianov AM. Dual spatial folds and different local structures of the HIV-1 immunogenic crown in various virus isolates. J Biomol Struct Dyn. 2004;22(2):159-70.
[57] Andrianov AM. Global and local structural properties of the principal neutralizing determinant of the HIV-1 envelope protein gp120. J Biomol Struct Dyn. 1999;16(4):931-53.
[58] Wang WK, Dudek T, Zhao YJ, Brumblay HG, Essex M, Lee TH. CCR5 coreceptor utilization involves a highly conserved arginine residue of HIV type 1 gp120. Proc Natl Acad Sci U S A. 1998;95(10):5740-5.
[59] MacArthur MW, Thornton JM. Conformational analysis of protein structures derived from NMR data. Proteins. 1993;17(3):232-51.
[60] W?thrich K. NMR studies of structure and function of biological macromolecules. Biosci Rep. 2003;23(4):119-68.
[61] Andrianov AM, Sherman SA. Promises of combined use of molecular mechanics and nuclear Overhauser effect spectroscopy data in modelling spatial peptide and protein structures. Stud Biophys. 1990;135: 107-14.
[62] Hsu ST, Bonvin AM. Atomic insight into the CD4 binding-induced conformational changes in HIV-1 gp120. Proteins. 2004;55(3):582-93.