Biopolym. Cell. 2005; 21(6):515-524.
Structure and Function of Biopolymers
S-DNA is oversupercoiled macromolecule with ~2 Å rise per nucleotide pair
1, 2Limanskaya O. Yu., 1Limanskaya L. A., 1, 3Limanskii A. P.
  1. Mechnikov Institute of Microbiology and Immunology NAMS of Ukraine
    14, Pushkinska Str., Kharkiv, Ukraine, 61057
  2. Institute of Experimental and Clinical Veterinary Medicine, UAAS
    83, Pushkinska Str., Kharkov, Ukraine, 61023
  3. Laboratory of Plasma Membrane and Nuclear Signaling Graduate school of Biostudies, Kyoto University
    Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan 606-8501


The supercoiled pGEMEX DNA with length of 3993 nucleotides was immobilized on different substrates (freshly cleaved mica, standard aminomica, modified aminomica with increased and decreased aminogroups surface density comparing with standard aminomica) and studied by the atomic force microscopy. The DNA molecules with extremely high level of supercoiling were visualized on the modified aminomica with increased surface charge density. The rise per nucleotide pair was determined by measurement of a contour length of single oversupercoiled DNA molecules. The rise value per nucleotide pair varied from H=1.94 Å up to H=2.19 Å for different molecules. These spring-like compressed supercoiled DNA molecules with decreased rise in comparison with well known DNA forms were referred to the new DNA form, called S-DNA.
Keywords: supercoiled DNA, atomic force microscopy, aminomica, oversupercoiled DNA, S-DNA


[1] Ivanov VI. [Double helix DNA]. Mol Biol (Mosk). 1983;17(3):616-21.
[2] Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.
[3] Wang JC. Helical repeat of DNA in solution. Proc Natl Acad Sci U S A. 1979;76(1):200-3.
[4] * Lyubchenko Y, Jacobs B., Lindsay S. Atomic force microscopy of reovirus dsRNA: a routine technique for length measurement. Nucl. Acids Res. 1992. 20: 3983-3986.
[5] Lyubchenko YL, Gall AA, Shlyakhtenko LS, Harrington RE, Jacobs BL, Oden PI, Lindsay SM. Atomic force microscopy imaging of double stranded DNA and RNA. J Biomol Struct Dyn. 1992;10(3):589-606.
[6] Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996;93(8):3477-81.
[7] Moy VT, Florin EL, Gaub HE. Intermolecular forces and energies between ligands and receptors. Science. 1994;266(5183):257-9.
[8] Lyubchenko YL, Shlyakhtenko LS. Visualization of supercoiled DNA with atomic force microscopy in situ. Proc Natl Acad Sci U S A. 1997;94(2):496-501.
[9] Cherny DI, Jovin TM. Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. J Mol Biol. 2001;313(2):295-307.
[10] Boles TC, White JH, Cozzarelli NR. Structure of plectonemically supercoiled DNA. J Mol Biol. 1990;213(4):931-51.
[11] * Tanigawa M., Okada T. Atomic force microscopy of supercoiled DNA structure on mica. Anal. Chim. Acta. 1998. 365: 19-25.
[12] Bussiek M, M?cke N, Langowski J. Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution. Nucleic Acids Res. 2003;31(22):e137.
[13] Kuznetsov IA, Korolev NI, Filippov SM, Khamizov RKh. [Proton induced compaction of DNA. Conductometric titration of isoionic solutions and ion-exchange properties of immobilized DNA]. Mol Biol (Mosk). 1983;17(1):153-61.
[14] Vologodskii AV, Levene SD, Klenin KV, Frank-Kamenetskii M, Cozzarelli NR. Conformational and thermodynamic properties of supercoiled DNA. J Mol Biol. 1992;227(4):1224-43.
[15] Fujimoto BS, Schurr JM. Monte Carlo simulations of supercoiled DNAs confined to a plane. Biophys J. 2002;82(2):944-62.
[16] * Velichko Y., Yoshikawa K, Khokhlov A. Effect of twisting on the behavior of a double-stranded polymer chain: a Monte- Carlo simulation. J. Chem. Phys. 1999-111-P. 9424-9433.
[17] Rybenkov VV, Vologodskii AV, Cozzarelli NR. The effect of ionic conditions on DNA helical repeat, effective diameter and free energy of supercoiling. Nucleic Acids Res. 1997;25(7):1412-8.
[18] * Limansky A., Shlyakhtenko L, Schaus S., Henderson E., Lyubchenko Y. Aminomodified probes for atomic force microscopy. Probe microsc. 2002. 2: 227-234.
[19] Butt HJ. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J. 1991;60(6):1438-44.
[20] Hansma HG, Golan R, Hsieh W, Daubendiek SL, Kool ET. Polymerase activities and RNA structures in the atomic force microscope. J Struct Biol. 1999;127(3):240-7.
[21] Limanskii AP. Investigation of aminomodified tips for atomic force microscopy of biomolecules. Biopolym Cell. 2002; 18(1):62-70.
[22] Vologodskii VA. Topology and physical properties of circular DNA. M.: Nauka. 1988; 192 p.
[23] Rivetti C, Codeluppi S, Dieci G, Bustamante C. Visualizing RNA extrusion and DNA wrapping in transcription elongation complexes of bacterial and eukaryotic RNA polymerases. J Mol Biol. 2003;326(5):1413-26.
[24] Leuba SH, Karymov MA, Tomschik M, Ramjit R, Smith P, Zlatanova J. Assembly of single chromatin fibers depends on the tension in the DNA molecule: magnetic tweezers study. Proc Natl Acad Sci U S A. 2003;100(2):495-500.
[25] Mazur J, Jernigan RL, Sarai A. [Conformational effects of DNA stretching]. Mol Biol (Mosk). 2003;37(2):277-87.
[26] Lymans'ky? OP, Lymans'ka OIu. [Study of microorganism genome DNA by atomic force microscopy]. Tsitol Genet. 2002;36(4):30-6.
[27] Limanskii A. Atomic force microscopy: visualization of DNA and proteins to measure the strength of intermolecular interactions. Usp Sovrem Biol. 2003; 123(6):531-42.
[28] Newlin DD, Miller KJ, Pilch DF. Interactions of molecules with nucleic acids. VII. Intercalation and T.A specificity of daunomycin in DNA. Biopolymers. 1984;23(1):139-58.
[29] * Frank-Kamenetskii M. DNA supercoiling and unusual structures DNA topology and biological effects. DNA topology and its biological effects. Eds N. Cozzarelli, J. Wang. New York: Cold Spring Harbor Lab. press, 1990: 186-215.