Biopolym. Cell. 2005; 21(2):91-106.
Conductometric enzyme biosensors: theory, technology, application
1Dzyadevych S. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680


A theoretic principles of conductometric method of mesurements, possibility of their application for registration of enzymatic react­ions, and examples of such application have been shown. Variants of different conductometric transducers for biosensor creation, immobilisation methods of active material onto surface, measure­ ments schemes and methods have been presented. Some examples of conductometric enzyme biosensors, their advantages and disad­vantages, and perspectives of their application have been described.
Keywords: conductometric biosensor, impedance, condcutance, enzyme


[1] Coulet PR. What is a biosensor? Biosensor principles and application. Eds L. J. Blum, P. R. Coulet New York: Marcel Dekker, 1991:. 1–6.
[2] Thevenot DR, T?th K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification (Technical report). Pure Appl Chem. 1999; 71(12):2333—2348.
[3] Hall EA. Recent progress in biosensor development. Int J Biochem. 1988;20(4):357-62.
[4] Mizutani F, Yamanaka T, Tanabe Y, Tsuda K. An enzyme electrode forl-lactate with a chemically-amplified response. Anal Chim Acta. 1985;177:153–66.
[5] Bartlett PN, Whitaker RG. Strategies for the development of amperometric enzyme electrodes. Biosensors. 1987;3(6):359–79.
[6] Morrison LE. Time-resolved detection of energy transfer: theory and application to immunoassays. Anal Biochem. 1988;174(1):101-20.
[7] Lee HA, Morgan MRA. Food immunoassays: Applications of polyclonal, monoclonal and recombinant antibodies. Trends Food Sci Technol . 1993;4(5):129–34.
[8] Buch RM, Rechnitz GA. Neuronal biosensors. Anal Chem. 1989;61(8):533A-542A.
[9] Lewis R. Biological Recognition Repackaged. BioScience . JSTOR; 1989;39(5):288–91.
[10] Wiseman A. Comparison of use of immobilized cells and immobilized enzymes for bioanalysis: Considerations in determination of ethanol. Trends Anal Chem. 1992;11(8):303–6.
[11] Karube L, Sode K. Microbial sensors for process and environmental control. Bioinstrumentation and biosensors. Ed. D. L. Wise. New York: Marcel Dekker Inc., 1991: 149-60.
[12] Dumschat C, M?ller H, Stein K, Schwedt G. Pesticide-sensitive ISFET based on enzyme inhibition. Analytica Chimica Acta. 1991;252(1-2):7–9.
[13] Bergveld P. Thirty years of ISFETOLOGY. What happened in the past 30 years and what may happen in the next 30 years?. Sensors and Actuators B. 2003; 88:1-20.
[14] Jossinet J, McAdams ET. The sin-electrode interface impedance. Innov Tech Biol Med. 1991; 12(1):21-31.
[15] Macdonald JR. Impedance/admittance response of a binary electrolyte. Electrochimica Acta. 1992;37(6):1007–14.
[16] Lorenzo E, Pariente F, Hern?ndez L, Tobalina F, Darder M, Wu Q, Maskus M, Abru?a HD. Analytical strategies for amperometric biosensors based on chemically modified electrodes. Biosens Bioelectron. 1998;13(3-4):319-32.
[17] Dzyadevych SV. Amperometric biosensors. Key work principles and features of transducers of different generations. Biopolym Cell. 2002; 18(1):13-25.
[18] Kelt DB, Davey CL. Conductimetric and impediometric devices. Biosensors. A practical approach. Ed. A. F. Gass. Oxford: IRL Press, 1990: 125-53.
[19] Cullen DC, Sethi RS, Lowe CR. Multi-analyte miniature conductance biosensor. Anal Chim Acta. 1990;231:33–40.
[20] Fawcett NC, Evans JA, Chien L-C, Flowers N. Nucleic Acid Hybridization Detected by Piezoelectric Resonance. Anal Lett. 1988;21(7):1099–114.
[21] Roef P. Attention focuses on optical fibre biosensors. Sensor Rev. 1987;7(3):127–32.
[22] Smardzewski RR. Multi-element optical waveguide sensor: General concept and design. Talanta. 1988;35(2):95-101.
[23] Luong JHT, Mulchandani A, Guibault GG. Developments and application of biosensors. Tibtechnology. 1988; 6: 310-6.
[24] Dittmar A, Pauchard T, Delhomme G, Vernet-Maury E. A thermal conductivity sensor for the measurement of skin blood flow. Sens Actuat B: Chem. 1992;7(1-3):327–31.
[25] Dzyadevych SV. Biosensors based on ion-selective field effect transistors: theory, technology, practice. Biopolym Cell. 2004; 20(1-2):7-16.
[26] Dzyadevych SV. Amperometric biosensors. Modern technologies and commercial variants. Biopolym Cell. 2002; 18(5):363-76.
[27] Dziadevych SV, Soldatkin OP. [A conductometric method of measuring enzymatic catalysis]. Ukr Biokhim Zh. 1994;66(4):30-42.
[28] Hall E. Biosensors. Cambridge: Open Univ. press, 1991. 351 p.
[29] Tran Minh C. Biosensors. London: Chapman & Hall, 1993. 236 p.
[30] Kress-Rogers E. Handbook of biosensors and electronic noses: medicine, food, and environment. New York: CRC press, 1997. 720 p.
[31] Glass RS, Perone SP, Ciarlo DR. Application of information theory to electroanalytical measurements using a multielement, microelectrode array. Anal Chem. 1990;62(18):1914–8.
[32] Hoffheins BS, Lauf RJ, Siegel MW. Intelligent Thick?film Gas Sensor. Microelectronics International. 1987;4(3):8–12.
[33] Alder JF, Fielden PR, Clark AJ. Simultaneous conductivity and permittivity detector with a single cell for liquid chromatography. Anal Chem. 1984;56(6):985–8.
[34] Dorokhova EN, Prokhorova GV. Analytical chemistry. Physico-chemical methods of analysis. M.: Vysch Shkola, 1991. 256 p.
[35] Gopel W, Jones TA, Kleitz M, Lundstrom J, Seiyama T. Conductometry. Sensors. A Comprehensive Survey. Eds W. Gopel, J. Hesse, J. N. Zemel. Weinheim: VCII Verlagsgesellschaft, 1991; Vol. 2, pt I: 314-37.
[36] Kelt DB. The principles and potential of electrical admittance spectroscopy: an introduction. Biosensors: Fundamentals and Applications. Eds A. P. F. Turner, I. Karube, G. S. Wilson. Oxford: Oxford Univ. press, 1987: 427-68.
[37] Cammann K. Das Arbeiten Mit Ionenselektiven Elektroden. Springer-Verlag Berlin Heidelberd 1973, 1977
[38] Vetter KJ. Elektrochemische Kinetik. Springer-Verlag, Berlin, Gottingen, Heidelberg, 1961
[39] McAdams ET, Jossinet J. Electrode-electrolyte impedance and polarisation. Innov. Tech Biol Med. 1991; 12(1): 11-20.
[40] Antropov LI. Theoretical electrochemistry. M.: Vysch Shkola, 1984. 519 p.
[41] Watson LD, Maynard P, Cullen DC, Sethi RS, Brettle J, Lowe CR. A microelectronic conductimetric biosensor. Biosensors. 1987-1988;3(2):101-15.
[42] Kissinger PT, Heineman WR. Laboratory techniques in electroanalytical chemistry. New York: Marcel Dekker Inc., 1984. p.
[43] Dzyadevich SV, Shul'ga AA, Patskovsky SV, Arkhipova VN, Soldatkin AP, Strikha VI. Thin-film conductometric transducer for enzyme biosensors. Elektrokhimiia. 1994; 30(8):982-7.
[44] Olthuis W, Volanschi A, Bomer JG, Bergveld P. A new probe for measuring electrolytic conductance. Sens Actuators B Chem. 1993;13(1-3):230–3.
[45] Olthuis W, Smith A, van der Zalm RAJ, Bergveld P. New operational modes for the Ta2O5-based electrolyte conductance cell. Sens Actuators B Chem. 1994;18(1-3):65–8.
[46] Dzyadevych SV, Shulga AA, Patskovsky SV, Arkhipova VN, Soldatkin AP, Strikha VI. Thin-films conductometric transducer for enzyme biosensors. Rus J Electrochem. 1994; 30(8):887-91.
[47] Weimar U, G?pel W. A.c. measurements on tin oxide sensors to improve selectivities and sensitivities. Sens Actuators B: Chem 1995;26(1-3):13–8.
[48] Sheppard NF, Tucker RC, Wu C. Electrical conductivity measurements using microfabricated interdigitated electrodes. Anal Chem. 1993;65(9):1199–202.
[49] Lee W-Y, Kim S-R, Kim T-H, Lee KS, Shin M-C, Park J-K. Sol–gel-derived thick-film conductometric biosensor for urea determination in serum. Anal Chim Acta. 2000;404(2):195–203.
[50] Jacobs P, Suls J, Sansen W. Performance of a planar differential-conductivity sensor for urea. Sens Actuators B: Chem. 1994;20(2-3):193–8.
[51] Hintsche R, M?ller B, Dransfeld I, Wollenberger U, Scheller F, Hoffmann B. Chip biosensors on thin-film metal electrodes. Sens Actuators B: Chem. 1991;4(3-4):287–91.
[52] Trebbe U, Niggemann M, Cammann K, Fiaccabrino G, Koudelka-Hep M, Dzyadevich S, et al. A new calcium-sensor based on ion-selective conductometric microsensors – membranes and features. Fresenius’ J Anal Chem. 2001;371(6):734–9.
[53] Mikkelsen SR, Rechnitz GA. Conductometric transducers for enzyme-based biosensors. Anal Chem. 1989;61(15):1737-42.
[54] Bilitewski U, Drewes W, Schmid RD. Thick film biosensors for urea. Sens Actuators B: Chem. 1992;7(1-3):321–6.
[55] McNeil CJ, Athey D, Ball M, Ho WO, Krause S, Armstrong RD, et al. Electrochemical Sensors Based on Impedance Measurement of Enzyme-Catalyzed Polymer Dissolution: Theory and Applications. Anal Chem. 1995;67(21):3928–35.
[56] Sergeyeva TA, Lavrik NV, Rachkov AE, Kazantseva ZI, Piletsky SA, El’skaya AV. Hydrogen peroxide – sensitive enzyme sensor based on phthalocyanine thin film. Anal Chim Acta. 1999;391(3):289–97.
[57] Endres H-E, Drost S. Optimization of the geometry of gas-sensitive interdigital capacitors. Sens Actuators B: Chem. 1991;4(1-2):95–8.
[58] Ho WO, Krause S, McNeil CJ, Pritchard JA, Armstrong RD, Athey D, et al. Electrochemical Sensor for Measurement of Urea and Creatinine in Serum Based on ac Impedance Measurement of Enzyme-Catalyzed Polymer Transformation. Anal Chem. 1999;71(10):1940–6.
[59] Chin W, Kroontje W. Conductivity Method for Determination of Urea. Anal Chem. 1961;33(12):1757–60.
[60] Bourrelly P, Bourrelly-Durand V. M?thode d'etude par conductometric diff?rentielle de la cin?tique de Phydrolise enzymatique de l'uree. J Chem Phys. 1965; 65: 673-7.
[61] Andreev VS, Rosengart VI, Torubarov VA. [Recording the kinetics of enzyme reactions by the high-frequency method]. Ukr Biokhim Zh. 1965;37(6):920-6. .
[62] Andreev VS, Bashtanov AV. Differential conductometric device for measuring physical and chemical processes. Zavodskaya Laboratoriia. 1968; 34(12):1546-8.
[63] Hanss M, Rey A. [Use of conductometry in the study of enzymic reactions. Urea-urease system]. Biochim Biophys Acta. 1971;227(3):630-8.
[64] Lawrence AJ. Conductimetric enzyme assays. Eur J Biochem. 1971;18(2):221-5.
[65] Lawrence AJ, Moores GR. Conductimetry in enzyme studies. Eur J Biochem. 1972;24(3):538-46.
[66] Besson C, Vessillier S, Gonzales T, Saulnier J, Wallach J. Conductimetric assay of pyroglutamyl peptidase activity. Anal Chim Acta. 1994;294(3):305–9.
[67] Shul'ga AA, Soldatkin AP, El'skaya AV, Dzyadevich SV, Patskovsky SV, Strikha VI. Thin-film conductometric biosensors for glucose and urea determination. Biosens Bioelectron. 1994;9(3):217-23.
[68] Shulga AA, Dzyadevich SV, Soldatkin AP, Patskovsky SV, Strikha VI. Conductometrie biosensors for glucose and urea based on microfabricated thin-film interdigitated arrayelectrodes. Biol Ital. 1993; 23(6):40-5.
[69] Shul'ga AA, Dziadevich SV, Soldatkin AP, Patskovskiy SV, Starodub NF, Strikha VI, El'skaya AV. The thin film Conductometric enzimobiosensor for determination of glucose and urea in the blood. Elektrokhimiya. 1993; 29(8):998-1002.
[70] Dziadevich SV, Soldatkin AP, Shul'ga AA, Strikha VI, El'skaya AV. Conductometric biosensor for the determination of organophosphorus pesticides. Zh anal Khim. 1994; 49(8):874-8.
[71] Yon Hin BFY, Sethi RS, Lowe CR. Multi-analyte microelectronic biosensors. Sens Actuators B: Chemical. 1990;1(1-6):550–4.
[72] Nyamsi Hendji AM, Jaffrezic-Renault N, Martelet C, Shul’ga AA, Dzydevich SV, Soldatkin AP, et al. Enzyme biosensor based on a micromachined interdigitated conductometric transducer: application to the detection of urea, glucose, acetyl- andbutyrylcholine chlordes. Sens Actuators B: Chem. 1994;21(2):123–9.
[73] Dzydevich SV, Shu?ga AA, Soldatkin AP, Hendji AMN, Jaffrezic-Renault N, Martelet C. Conductometric biosensors based on cholinesterases for sensitive detection of pesticides. Electroanalysis. 1994;6(9):752–8.
[74] Zhylyak GA, Dzyadevich SV, Korpan YI, Soldatkin AP, El’skaya AV. Application of urease conductometric biosensor for heavy-metal ion determination. Sens Actuators B: Chem. 1995;24(1-3):145–8.
[75] Dzyadevich SV, Zhylyak GA, Soldatkin AP, El'skaya AV. Conductometric urease microbiosensor based on thin-film interdigitated electrodes for urea determination. Biopolym Cell. 1996; 12(1):53-7.
[76] Arkhipova VN, Dziadevich SV, Soldatkin AP, El'skaia AV. [Enzyme biosensors for penicillin determination based on conductometric planar electrodes and pH-sensitive field effect transistor]. Ukr Biokhim Zh. 1996;68(1):26-31.
[77] Castillo-Ortega MM, Rodriguez DE, Encinas JC, Plascencia M, M?ndez-Velarde FA, Olayo R. Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline–poly(n-butyl methacrylate) composites. Sens Actuators B: Chemical. 2002;85(1-2):19–25.
[78] Limbut W. Comparative study of controlled pore glass, silica gel and Poraver® for the immobilization of urease to determine urea in a flow injection conductimetric biosensor system. Biosensors and Bioelectronics . Elsevier BV; 2004;19(8):813–21.
[79] Steinschaden A, Adamovic D, Jobst G, Glatz R, Urban G. Miniaturised thin film conductometric biosensors with high dynamic range and high sensitivity. Sens Actuators B: Chem. 1997;44(1-3):365–9.
[80] Lee WY, Lee KS, Kim TH, Shin MC, Park JK. Microfabricated conductometric urea biosensor based on sol-gel immobilized urease. Electroanalysis. 2000; 12: 78-82.
[81] Sheppard NF, Mears DJ, Guiseppi-Elie A. Model of an immobilized enzyme conductimetric urea biosensor. Biosens Bioelectron. 1996;11(10):967–79.
[82] Gallardo Soto AM, Jaffari SA, Bone S. Characterisation and optimisation of AC conductimetric biosensors. Biosens Bioelectron. 2001;16(1-2):23-9.
[83] Jin P, Yamaguchi A, Oi FA, Matsuo S, Tan J, Misawa H. Glucose sensing based on interdigitated array microelectrode. Anal Sci. 2001;17(7):841-6.
[84] Senillou A, Jaffrezic N, Martelet C, Cosnier S. A laponite clay-poly(pyrrole–pyridinium) matrix for the fabrication of conductimetric microbiosensors. Anal Chim Acta. 1999;401(1-2):117–24.
[85] Dziadevich SV, Korpan IaI, Soldatkin AP, Shul'ga AA, Strikha VI, El'skaia AV. [Use of conductometric microsensors for studying kinetic parameters of enzymes]. Ukr Biokhim Zh. 1993;65(5):47-53.
[86] Soldatkin AP, El’skaya AV, Shul’ga AA, Jdanova AS, Dzyadevich SV, Jaffrezic-Renault N, et al. Glucose sensitive conductometric biosensor with additional Nafion membrane: reduction of influence of buffer capacity on the sensor response and extension of its dynamic range. Anal Chim Acta. 1994;288(3):197–203.
[87] Dziadevych SV, Soldatkin OP, Arkhypova VM, Shulha OA, Iel?ka HV. [A conductometric enzymatic glucose sensor. A search for ways to improve analytical characteristics]. Ukr Biokhim Zh. 1995;67(6):53-9.
[88] Biloivan OA, Dziadevich SV, Soldatkin OP, Starodub MF, Iel'ska GV. [Development of enzyme biosensor based on trypsin and conductometric thin-film electrodes for protein and artificial substrates determination]. Ukr Biokhim Zh. 1997;69(2):14-8.
[89] Soldatkin AP, Dzyadevich SV, Korpan YI, Arkhipova VN, Zhylyak GA, Piletsky SA, Sergeeva TA, Panasyuk TL, El'skaya AV. Biosensors based on conductometric detection. Biopolym Cell. 1998; 14(4):268-76.
[90] Dzyadevich SV, Arkhipova VN, Soldatkin AP, El’skaya AV, Shul’ga AA. Glucose conductometric biosensor with potassium hexacyanoferrate(III) as an oxidizing agent. Anal Chim Acta. 1998;374(1):11–8.
[91] Arkhipova VN, Dzyadevich SV, Schuvailo ON, Soldatkin AP, Elskaya AV., Jaffrezic-Renault N, Jaffrezic H, Martelet C. Conception of multibiosensor for determination of different toxic substances based on the enzyme inhibitor analysis. Biopolym Cell. 2001; 17(1):70-7.
[92] Dzyadevych SV, Arkhypova VN, Korpan YI, El'skaya AV, Soldatkin AP, Jaffrezic-Renault N, Martelet C. Conductometric formaldehyde sensitive biosensor with specifically adapted analytical characteristics. Analyt Chim Acta. 2001; 445(1):47–55.
[93] Arkhypova V. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances. Talanta. 2001;55(5):919–27.
[94] Dzyadevych SV, Arkhypova VN, Elskaya AV, Jaffrezic-Renault N, Martelet C, Soldatkin AP. Conductometric enzyme biosensors for substrates or inhibitors analysis. Curr Top Analyt Chem. 2001; 2: 179-86.
[95] Dzyadevych SV, Soldatkin AP, Chovelon J-M. Assessment of the toxicity of methyl parathion and its photodegradation products in water samples using conductometric enzyme biosensors. Analytica Chimica Acta . 2002;459(1):33–41.
[96] Dzyadevych SV, Chovelon J-M. A comparative photodegradation studies of methyl parathion by using Lumistox test and conductometric biosensor technique. Materials Science and Engineering: C. 2002;21(1-2):55–60.
[97] Anh TM, Dzyadevych SV, Van MC, Renault NJ, Duc CN, Chovelon JM. Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites. Talanta. 2004;63(2):365-70.
[98] Dzyadevych SV, Soldatkin AP, Arkhypova VN, El’skaya AV, Chovelon J-M, Georgiou CA, et al. Early-warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition. Sens Actuators B: Chem. 2005;105(1):81–7.