Biopolym. Cell. 2005; 21(1):60-63.
Molecular Biomedicine
Changes in the glial fibrillary acidic protein concentration in the
medial part of vision tuber under the generation of conditioned
reaction of active avoidance
- Dnipropetrovs'k State Medical Academy
9, Dzerzhyinskoho Str., Dnipropetrovs'k, Ukraine, 49044 - Dnipropetrovsk National University
72, Gagarin Av., Dnipropetrovs'k, Ukraine, 49050
Abstract
The changes in concentration of glial fibrillary acidic protein (GFAP), a marker of glial intermediate filaments in astrocytes of
medial part of vision tuber, are studied for the rat brain during
generation of conditioned reaction of active avoidance. The increase
in GFAP level in membrane fractions of medial part of vision tuber
has been shown to be statistically significant in 2 hrs and 24 hrs
after the start of training. The data obtained suggest the GFAP
participation in the processes connected with learning and meÂmorization
Keywords: glial fibrillary acidic protein, conditioned reaction of active avoidance, medial part of vision tuber, learning, memory
Full text: (PDF, in Ukrainian)
References
[1]
Neurochemistry. Eds IP Ashmarin, PV Stukalov. M.: Izd Inst Biomed. Chem RAMS, 1996. 470 p.
[3]
Berezin VA, Velik YaV. Specific proteins of nervous tissue. K.: Vyshcha shkola, 1990. 263 p.
[4]
Pevzner LZ. glia Functional biochemistry. L.: Nauka, 1972. 200 p.
[5]
Duka TI, Leshchins'ka IA, Chornaya VI. The characteristics of glial fibrillary acidic protein – component of astroglial intermediate filaments. Biopolym. Cell. 2002; 18(3):179-85.
[7]
Fuchs E, Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345-82.
[8]
Leshchinskaya IA, Douka TI, Chernaya VI. Behavioral reactions of rats and the contents of neurospecific proteins in their brain after single X-ray irradiation. Neurophysiology. 2000;32(1):17–22.
[9]
McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, Zhang CL, Pearce RA, Chiu SY, Messing A. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A. 1996;93(13):6361-6.
[10]
Mitchison TJ. Evolution of a dynamic cytoskeleton. Philos Trans R Soc Lond B Biol Sci. 1995;349(1329):299-304.
[11]
Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S. Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron. 1996;16(3):587-99.
[12]
Styren SD, Kamboh MI, DeKosky ST. Expression of differential immune factors in temporal cortex and cerebellum: the role of alpha-1-antichymotrypsin, apolipoprotein E, and reactive glia in the progression of Alzheimer's disease. J Comp Neurol. 1998;396(4):511-20.
[13]
Day JR, Laping NJ, McNeill TH, Schreiber SS, Pasinetti G, Finch CE. Castration enhances expression of glial fibrillary acidic protein and sulfated glycoprotein-2 in the intact and lesion-altered hippocampus of the adult male rat. Mol Endocrinol. 1990;4(12):1995-2002.
[14]
Rutka JT, Murakami M, Dirks PB, Hubbard SL, Becker LE, Fukuyama K, Jung S, Tsugu A, Matsuzawa K. Role of glial filaments in cells and tumors of glial origin: a review. J Neurosurg. 1997;87(3):420-30.
[15]
Rouget M, Araud D, Seite R, Prochiantz A, Autillo-Touati A. Astrocyte-regulated synaptogenesis: an in vitro ultrastructural study. Neurosci Lett. 1993;150(1):85-8.
[16]
Kruglikov RI. Neurochemical mechanisms of learning and memory. M.: Nauka, 1981. 211 p.
[17]
Drozdov AL, Dzyak LA, Chornaya VI. Changes in the NCAM concentration in the brain neocortex frontal zone under active-defend skill conditioning. Biopolym Cell. 2002; 18(5):442-4.
[18]
Ibsen S, Berezin V, N?rgaard-Pedersen B, Bock E. Enzyme-linked immunosorbent assay of the D2-glycoprotein. J Neurochem. 1983;41(2):356-62.
[19]
Antibodies: A practical approach. Ed. D Catty. Oxford University Press, IRL Press, Oxford. 1989
[20]
Nedzvetski? VS, Berezich VA, Oberniak TI, Zhmareva EN. [Characteristics of specific intermediate filament proteins in human brain tumors]. Biokhimiia. 1986;51(11):1843-50.
[21]
Lakin GF. Biometrics. Vysshaya shkola, M. 1990. 352 p.
[22]
Dzyak LA, Duka TI, Drozdov AL, Chernaya VI. Glial fibrillary acidic protein in rat brain structures under conditions of training for a passive defensive habit. Neurophysiology. 1999;31(4):290–1.
[23]
Keyser DO, Pellmar TC. Synaptic transmission in the hippocampus: critical role for glial cells. Glia. 1994;10(4):237-43.
[24]
Chamak B, Fellous A, Glowinski J, Prochiantz A. MAP2 expression and neuritic outgrowth and branching are coregulated through region-specific neuro-astroglial interactions. J Neurosci. 1987;7(10):3163-70.
[25]
DeArmond SJ, Fajardo M, Naughton SA, Eng LF. Degradation of glial fibrillary acidic protein by a calcium dependent proteinase: an electroblot study. Brain Res. 1983;262(2):275-82.
[26]
Nakamura Y, Takeda M, Angelides KJ, Tada K, Hariguchi S, Nishimura T. Assembly, disassembly, and exchange of glial fibrillary acidic protein. Glia. 1991;4(1):101-10.
[27]
Noetzel MJ. Phosphorylation of the glial fibrillary acidic protein. J Neurosci Res. 1990;27(2):184-92.
[28]
Huang AM, Lee EH. Identification of a novel glial fibrillary acidic protein mRNA isotype related to memory retention in rats. Neuroreport. 1997;8(7):1619-24.