Biopolym. Cell. 2004; 20(6):530-534.
Molecular and Cell Biotechnologies
Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots
1Kovalchuk M. V., 1Lytvynenko T. L., 1Kononuchenko O. V., 1Voznyuk T. M., 1Rymar S. Yu., 1Negrutska V. V., 1Kozyrovska N. O.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The effect of Pseudomonas sp. IMBG163 on wheat seedlings (Triticum aestivum L. cv. Katyusha) was studied. This strain has been marked with the gus reporter gene in order to examine a colonization pattern and to monitor its maintenance on the plant roots. The strain IMBG163 significantly enhanced all biometric parameters measured: dry weight, height of shoots, length of roots. Co-culture of IMBG163 with the plant growth promoting bacterium Paenibacillus sp. IMBG156 did enhance the PGP effects. Detection of marked experimental bacterium on/into the plant have being performed with histochemical GUS assay and did not reveal the endophytic pattern of colonization. For monitoring of IMBG163 in the rhizosphere, a culture-independent method, ARDRA, has been used. A combination of conventional and molecular techniques showed IMBG163 to be effective and persistent colonizer of the wheat roots.

References

[1] Montesinos E. Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol. 2003;6(4):245-52.
[2] Wiehe W., Hoflich G. Establishment of plant growth promoting bacteria in the rhizosphere of subsequent plants after harvest of the inoculated precrops. Microbiol Res. 1995;150(3):331-336.
[3] Kovalchuk M.V., Negrutska V.V., Zaetz I.E., Pasechnik L.A., Gvozdyak R.J., Kozyrovska N.O. Ecologically-friendly crop production with microbial inoculants. II. Biocontrol capacity of bacterial isolates, candidates for inoculant development. Int. Conf. Natural Ecosystems of the Carpathian Mountains Under Conditions of Intensive Anthropogenic Impact, (October 4-7, 2001, Uzhhorod, Ukraine). Uzhhorod 2001; 82-5.
[4] Hase C., Hottinger M., Moenne-Loccoz Y., Defago G., Hase C., Hottinger M., Moenne-Loccoz Y., Defago G, Moenne-Loccoz Y. Survival and cell culturability of biocontrol pseudomonas fluorescens cha0 in the rhizosphere of cucumber grow in two soils of contrasting fertility status. Biol. Fertil. Soils. 2000; 32(3):217-221.
[5] Mascher F, Hase C, Moenne-Loccoz Y, Defago G. The viable-but-nonculturable state induced by abiotic stress in the biocontrol agent Pseudomonas fluorescens CHA0 does not promote strain persistence in soil. Appl Environ Microbiol. 2000;66(4):1662-7.
[6] Lee K, Lim JB, Yum JH, Yong D, Chong Y, Kim JM, Livermore DM. bla(VIM-2) cassette-containing novel integrons in metallo-beta-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob Agents Chemother. 2002;46(4):1053-8.
[7] Docquier JD, Riccio ML, Mugnaioli C, Luzzaro F, Endimiani A, Toniolo A, Amicosante G, Rossolini GM. IMP-12, a new plasmid-encoded metallo-beta-lactamase from a Pseudomonas putida clinical isolate. Antimicrob Agents Chemother. 2003;47(5):1522-8.
[8] Van Elsas J.D., Duarte G.F., Rosado A.S., Smalla K. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J Microbiol Methods. 1998; 32 (2):133-154.
[9] Johnsen K, Enger O, Jacobsen CS, Thirup L, Torsvik V. Quantitative selective PCR of 16S ribosomal DNA correlates well with selective agar plating in describing population dynamics of indigenous Pseudomonas spp. in soil hot spots. Appl Environ Microbiol. 1999;65(4):1786-8.
[10] Rezzonico F, Moenne-Loccoz Y, Defago G. Effect of stress on the ability of a phlA-based quantitative competitive PCR assay to monitor biocontrol strain Pseudomonas fluorescens CHA0. Appl Environ Microbiol. 2003;69(1):686-90.
[11] Miller J.H. Experiments in molecular genetics, New York: Cold Spring Harbor Lab. press 1972; 436 p.
[12] Pat. Ukraine 22797A. A method of producing a biological. NA Kozyrovska, A Hromozova. Publish. 04/21/98.
[13] Tang Y.W., Bonner J. The enzymatic inactivation of indoleacetic acid; some characteristics of the enzyme contained in pea seedlings. ch Biochem. 1947;13(1):11-25.
[14] King E.O., Ward M.K., Raney D.E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954;44(2):301-7.
[15] Aristovskaya TV, Vladimirskaya MYe, Gollerbakh MM. Large workshop on microbiology. Ed. GL Seliber. Moscow, Higher school. 1962; 490 p.
[16] Kovalchuk M.V., Negrutska V.V., Kovtunovych G.L., Lar O.V., Korniichuk O.S., Rogutskyi I.S., Alpatov A.P., et al. Modeling the pNARSLux transfer in the wheat rhizosphere under simulated microgravity. Kosmichna nauka i technologiya, 2003; 9 (2 SUPPL.):10-14.
[17] Wilson KJ, Sessitsch A, Corbo JC, Giller KE, Akkermans AD, Jefferson RA. beta-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other gram-negative bacteria. Microbiology. 1995;141 ( Pt 7):1691-705.
[18] Dobbelaere S., Vanderleyden J., Okon Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci. 2003;22 (2):107-149.
[19] Troxler J, Zala M, Moenne-Loccoz Y, Keel C, Defago G. Predominance of Nonculturable Cells of the Biocontrol Strain Pseudomonas fluorescens CHA0 in the Surface Horizon of Large Outdoor Lysimeters. Appl Environ Microbiol. 1997;63(10):3776-82.
[20] Normander B, Hendriksen NB, Nybroe O. Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability, and activity in the natural barley rhizosphere. Appl Environ Microbiol. 1999;65(10):4646-51.
[21] Bjorklof K, Sen R, Jorgensen KS. Maintenance and impacts of an inoculated mer/luc-tagged Pseudomonas fluorescens on microbial communities in birch rhizospheres developed on humus and peat. Microb Ecol. 2003;45(1):39-52.
[22] Raaijmakers JM, Weller DM. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol. 2001;67(6):2545-54.
[23] McSpadden Gardener BB, Schroeder KL, Kalloger SE, Raaijmakers JM, Thomashow LS, Weller DM. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl Environ Microbiol. 2000;66(5):1939-46.
[24] Van Overbeek LS, Van Veen JA, Van Elsas JD. Induced Reporter Gene Activity, Enhanced Stress Resistance, and Competitive Ability of a Genetically Modified Pseudomonas fluorescens Strain Released into a Field Plot Planted with Wheat. Appl Environ Microbiol. 1997;63(5):1965-73.
[25] Glandorf DC, Verheggen P, Jansen T, Jorritsma JW, Smit E, Leeflang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PA, van Loon LC. Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol. 2001;67(8):3371-8.
[26] Viebahn M, Glandorf DC, Ouwens TW, Smit E, Leeflang P, Wernars K, Thomashow LS, van Loon LC, Bakker PA. Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol. 2003;69(6):3110-8.
[27] Benizri E, Schoeny A, Picard C, Courtade A, Guckert A. External and Internal Root Colonization of Maize by TwoPseudomonas Strains: Enumeration by Enzyme-Linked Immunosorbent Assay(ELISA). Curr Microbiol. 1997;34(5):297-302.
[28] Quadt-Hallmann A., Benhamou N., Kloepper J.W. Bacterial endophytes in cotton: Mechanisms of entering the plant. Can J Microbiol. 1997; 43(6):577-582.
[29] Garbeva P, Overbeek LS, Vuurde JW, Elsas JD. Analysis of Endophytic Bacterial Communities of Potato by Plating and Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rDNA Based PCR Fragments. Microb Ecol. 2001;41(4):369-383.
[30] Reiter B, Pfeifer U, Schwab H, Sessitsch A. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol. 2002;68(5):2261-8.
[31] Van Peer R., Schippers B. Plant growth responses to bacterization with selected Pseudomonas spp. starins and rhizosphere microbial development in hydroponic cultures. Can J Microbiol. 1989;35(4):456-63.
[32] Maurhofer M, Baehler E, Notz R, Martinez V, Keel C. Cross talk between 2,4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots. Appl Environ Microbiol. 2004;70(4):1990-8.