Biopolym. Cell. 2004; 20(6):524-529.
Molecular and Cell Biotechnologies
The modeling of the growth curve of the Escherichia coli strain produsing the recombinant β-galactosidase protein
1Moisa L. N., 1Chiljakov V. A.
  1. Scientific Industrial Enterprise, Joint-Stock Company "Diaproph-Med"
    35, Svetlitsky str., Kyiv, Ukraine, 04123

Abstract

A kinetics analysis method of growth curves based on the Verhulst logistic function has been used to determine the some growth parameters describing physiological activity of an E. coli strain expressing a recombinant β-galactosidase protein controlled by C1857 gene. The several growth points critical for microbial population development such as transition of increasing growth speed to the decreasing one (the inflection point of the curve – Te), the maximal growth acceleration phase (the point T1), the negative growth acceleration (slowing) phase (the point T2) have been calculated. This approach allows the prediction of the optimal conditions for the cloned gene expression in any age of the culture growth.

References

[1] Mashko SV, Skorochodova AYu, Zimenkov DV, Michurina TA, Gavrikov AV, Benevolensky MS, KiveroAD, Katashkina ZhI, Doroshenko VG, Biryukova IV, Debabov VG. The use of the metabolic regulation for optimization of the gene expression in bacterial cells - a novel field in XXI century biotechnology. Biotekhnologiya. 2002; 4:3-14.
[2] Pechurkin YaS. Population microbiology. Ed. II Gitel'zon. Novosibirsk, Nauka, 1978. 278 p.
[3] Pinchuk RJ, Brown WA, Hughes SM, Cooper DG. Modeling of biological processes using self-cycling fermentation and genetic algorithms. Biotechnol Bioeng. 2000; 67 (1):19-24.
[4] Berkholz R, Rohlig D, Guthke R. Data and knowledge based experimental design for fermentation process optimization. Enzyme Microb Technol. 2000; 27(10):784-8.
[5] Cubarsi R, Corchero JL, Vila P, Villaverde A. Numerical techniques and mathematical modelling for CI857-controlled gene expression and cell growth in recombinant E. coli. IMA J Math Appl Med Biol. 1998;15(3):257-78.
[6] Stanley KK, Luzio JP. Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J. 1984; 3 (6):1429-34.
[7] Maniatis T., Fritsch E. F., Sambrook J. Molecular cloning: a laboratory manual New York: Cold Spring Harbor Lab. publ., 1982 545 p.
[8] Pechurkin YaS, Terskoye IA. Analysis of the kinetics of growth and evolution of microbial populations (under controlled conditions). Ed. II Gitel'zon. Novosibirsk, Nauka, 1975. 216 p.
[9] Zwietering MH1, Jongenburger I, Rombouts FM, van 't Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990; 56 (6):1875-81.
[10] Plokhinskiy NA. Biometrics. Moscow, University Press, 1970. 367 p.
[11] Iberla K. Factor analysis. Translated from German VM Ivanova. Moscow, Statistics, 1980. 398 p.
[12] Dospekhov BA. Methodology field experience (the basics of statistical processing of the results of research). Moscow, Agropromizdat, 1985. 351 p.
[13] Robinson JA. Approaches and limits to modeling microbiological processes: Proc. 4th Int. symp. on Microb. Ecol. Eds F Megusar, M Gantar. Ljubljana, Slovene Soc. Microbiol. 1986; 20-9.
[14] Vygodskiy MYa. Handbook on higher mathematics. Moscow, Gos. publ tech. theory. of literature, 1957. 783 p.
[15] Basnak'yan IA. Cultivation of microorganisms with desired properties. Moscow, Medical, 1992. 192 p.
[16] Lebedev LR, Zernov YuP, Krivopalova GYa, Kanshina AV, Litovchenko LL, Pustoshilova YaM. Optimization biosynthesis granulocyte colony-stimulating factor by culturing the recombinant strain Escherichia coli SG 200-50/pGGf8. Biotekhnologiya. 1998. 2:44-51.
[17] Yano Y, Oguma T, Nagata H, Sasaki S. Application of logistic growth model to pharmacodynamic analysis of in vitro bactericidal kinetics. J Pharm Sci. 1998; 87 (10):1177-83.
[18] Rochet M-J, Flandrois J-P. Bacterial strain characterization using mathematical modelling of growth. Zentralbl Bakteriol. 1989; 271 (1):2-10.
[19] Peleg M. Modeling microbial populations with the original and modified versions of the continuous and discrete logistic equations. Crit Rev Food Sci Nutr. 1997; 37 (5):471-90.
[20] Vasil'yev BP, Zvontsova YaA, Savinov IP, Shmidt VM. Mathematical analysis leaf growth. Bot Zh. 1973; 58(9):1294-1301.
[21] Krykunets VM, Moysa LM, Dubovenko YeK, Malynska SM, Chechelnytska LM. Relations of soybean growth curves and dynamics of acetylene reducing activity of root nodules in the plant ontogenesis. Fiziologiia i biokhimiia kul'turnykh rasteniy. 1995; 27(1-2):11-9.