Biopolym. Cell. 2004; 20(5):398-401.
Structure and Function of Biopolymers
Characterization of lipids A of Ralstonia solanacearum lipopolysaccharides
1Varbanets L. D., 1Brovarskaya O. S., 1Vasiliev V. N., 1Vinarskaya N. V., 1Gogoman I. V.
  1. D. K. Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
    154, Academika Zabolotnogo Str., Kyiv, Ukraine, 03680

Abstract

The analysis of fatty acid profiles of lipopolysacharides has shown that R. solanacearum strains tested may be divided into two groups. The first group is represented by R. solanacearum strains (5712, 7945, 7955 and 8110) the lipids A of which contained hydroxylated fatty acids with long chains: 3-hydroxytetradecanoic, 2-hydroxyhexadecanoic and 2-hydroxyoctadecanoic. The second group was represented by R. solanacearum strains the lipids A of which contained hydroxylated fatty acids with short chains: 3-hydroxydecanoic, 2-hydroxydodecanoic and 3-hydroxydodecanoic. 3-hydroxytetradecanoic acid was observed in a small amount. A comparative analysis of the fatty acid composition and biological activity gives a possibility to suppose that 3-hydroxytetradecanoic, 2-hydroxyhexadecanoic and 2-hydroxyoctadecanoic acids may be responsible for the toxicity and pyrogenicity of the lipopolysaccharides tested.

References

[1] Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251-75.
[2] Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol Immunol. 1995;39(11):897-904.
[3] Vidaver AK. Synthetic and complex media for the rapid detection of fluorescence of phytopathogenic pseudomonads: effect of the carbon source. Appl Microbiol. 1967;15(6):1523-4.
[4] Westphal, O., Jann, K. Bacterial lipopolysaccharide exctraction with phenol-water and further application of the procedure. Eds R. Whistler, M. Wolfrom.-New York: Acad, press Meth. in Carbohydrate Chem.,1965; 5, pp. 83-91.
[5] Tanamoto K, Ishibashi N. Succinylated lipid A is a potent and specific inhibitor of endotoxin mitogenicity. J Gen Microbiol. 1992;138(12):2503-8.
[6] Takahashi K, Morikawa A, Kato Y, Sugiyama T, Koide N, Mu MM, Yoshida T, Yokochi T. Flavonoids protect mice from two types of lethal shock induced by endotoxin. FEMS Immunol Med Microbiol. 2001;31(1):29-33.
[7] Galbraith L., Jonsson M.H., Rudhe L.C., Wilkinson S.G. Lipids and fatty acids of Burkholderia and Ralstonia species. FEMS Microbiology Letters, 1999; 173(2):359-64
[8] Akiyama Y., Nishikawaji S., Eda S., Tanaka H., Ohnishi A., Kato K. Lipopolysaccharide of Pseudomonas solanacearum.Agr. Biol. Chem. 1985; 49(4)1193-1194.
[9] Brandenburg K, Mayer H, Koch MH, Weckesser J, Rietschel ET, Seydel U. Influence of the supramolecular structure of free lipid A on its biological activity. Eur J Biochem. 1993;218(2):555-63.