Biopolym. Cell. 2004; 20(4):307-315.
Structure and Function of Biopolymers
Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - Poly-An GmbH
Rudolf-Baschant-Str. 2, 13086 Berlin, Germany - Institute of Bioscience and Technology, Cranfield University
Silsoe, Bedfordshire, MK45 4DT, UK - Universitat Duisburg-Essen
Universitat-Str. 5, 45117 Essen, Germany
Abstract
«Surface photografting» of polypropylene (PPy) microporous membranes by molecularly imprinted polymers selective to triazine herbicides has been carried out by the UV irradiation-initiated co-polymerization of the functional monomer (2-acrylamido-2-methyl-1-propane sulphonic acid) and a cross-linker (N,N?-methylene-bis-acrylamide) in the presence of the template (terbumeton) onto photoinitiator (benzophenone)-coated samples. The grafting reaction occurs in a thin liquid layer on the membrane substrate, which is pre-soaked in a dimethyl formamide solution containing template, functional monomer and cross-linker. After irradiation with a 500 W mercury lamp for 10 min at room temperature, the membranes covered with the layer of imprinted polymer were obtained. The recognition sites complementary to terbumeton were formed in the membranes after extraction of the template molecules with methanol. Alternatively, reference polymeric membranes were prepared with the same monomer composition, but without the template. The membranes' recognition properties were estimated by their capability to herbicide adsorption from its aqueous solution. The membranes modified by the mixture of monomers containing terbumeton showed significantly higher adsorption capability to this herbicide than to analogous compounds (terbuthylazine, atrazine, desmetryn, metribuzine). The effect of the polymer composition on the binding properties of the membranes has been investigated. High affinity of these membranes to triazine herbicides together with their inexpensive preparation, provide a good basis for applications of molecularly imprinted polymer membranes in separation and solid-phase extraction.
Full text: (PDF, in English)
References
[1]
Kesting R. E. Synthetic polymeric membranes. A structural perspective. New York: John Willey and Sons, 1985. 573 p.
[2]
Schultz S. C Basic principles of membrane transport. Cambridge: Univ. press, 1970. 391 p.
[3]
Minoura N., Idei K, Rachkov A., Uzawa H, Matsuda K. Molecularly Imprinted Polymer Membranes with Photoregulated Template Binding. Chem. Mater. 2003; 15(25):4703-4.
[4]
Wulff C, Vietmeyer J., Poll H.-G. Enzyme-analogue built polymers, 22. Influence of the nature of the crosslinking agent on the performance of imprinted polymers in racemic resolution. Macromol. Chem. 1987; 188(4):731-740.
[5]
Damen J., Neckers DC. On the memory of synthesized vinyl polymers for their origins. Tetrahedron Lett. 1980; 21(20):1913-1916.
[6]
Ramstroem O., Andersson L. I., Mosbach K. Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting. J. Org. Chem. 1993; 58(26:7562-4.
[7]
Ramstrom O., Nicholls I. A., Mosbach K. Synthetic peptide receptor mimics: highly stereoselective recognition in noncovalent molecularly imprinted polymers. Tetrahedron Asym. 1994; 5(4):649-56.
[8]
Siemann M., Andersson LI. Mosbach K. Selective recognition of the herbicide atrazine by non-covalent molecularly imprinted polymers. J Agric Food Chem. 1996. 44(1):141-5.
[9]
Svenson J, Nicholls IA. On the thermal and chemical stability of molecularly imprinted polymers. Anal. Chim. Acta. 2001. 435(1):19-24.
[10]
Wulff G., Minarik M. Template-imprinted polymers for HPLC separation of racemates. J. Liq. Chromatogr. 1990; 13(5):2987-3000.
[11]
Vlatakis G, Andersson LI, M?ller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature. 1993;361(6413):645-7.
[12]
Piletsky S. A., Piletskaya E. K, El'skaya A. V., Levi R., Yano K., Karube I. Optical detection system for triazines based on molecularly imprinted polymers. Anal. Lett. 1997; 30(3):445-455.
[13]
Ramstrom O, Ye L, Mosbach K. Artificial antibodies to corticosteroids prepared by molecular imprinting. Chem Biol. 1996;3(6):471-7.
[14]
Sergeyeva T. A., Piletsky S. A., Panasyuk T. L., Brovko A. A., Slinchenko E. A., El'skaya A. V., Sergeeva L. M. Conductometric sensor for atrazine detection based on molecularly imprinted polymer membranes. Analyst. 1999; 124(3):331-334.
[15]
Yoshikawa M., Izumi J., Kitao T., Koya S., Sakamoto S. Molecularly imprinted polymeric membranes for optical resolution. J. Membr. Sci. 1995; 108(1-2):171-5.
[16]
Mathew-Krotz J, Shea KJ. Imprinted polymer membranes for the selective transport of targeted neutral molecules. J Amer Chem Soc. 1996; 118(34):8154-5.
[17]
Sergeyeva T. A., Piletsky S. A., Piletska E. V., Brovko OO, Karabanova L. V., Sergeeva L. M., El'skaya A. V., Turner A. P. F. In situ formation of porous molecularly imprinted polymer membranes. Macromolecules. 2003; 36(19):7352-7.
[18]
Hong J.-M., Anderson P. E., Qian J., Martin C. R.Selectively-Permeable Ultrathin Film Composite Membranes Based on Molecularly-Imprinted Polymers. Chem. Mater. 1998; 10(4):1029-33.
[19]
Dhal P. K., Vidyasankar S., Arnold F. H. Surface Grafting of Functional Polymers to Macroporous Poly(trimethylolpropane trimethacrylate). Chem. Mater. 1995. 7(1):154-62.
[20]
Wang H. Y., Kobayashi T., Fuji N. Surface molecular imprinting on photosensitive dithiocarbamoyl polyacrylonitrile membranes using photograft polymerization. J Chem. Technol. Biotechnol. 1997; 70(4):355-62.
[21]
Ulbricht M. Photograft-polymer-modified microporous membranes with environment-sensitive permeabilities. React. Funct. Polym. 1996; 31(2):165-77.
[22]
Tazuke S., Kimura H. Surface photografting. I. Graft polymerization of hydrophilic monomers onto various polymer films. J. Polym. Sci.: Polym. Lett. Ed. 1978.; 16(10):497-500.
[23]
Bellobono I. R., Tolusso F., Selli E. Calgari S, Berlin A. Photochemical grafting of acrylated azo dyes onto polymeric surfaces. I. Grafting of 4-(N-ethyl, N-2-acryloxyethyl) amino, 4?-nitro, azobenzene onto polyamide and polypropylene fibers. J Appl. Polym. Sci. 1981; 26(2):619-28.
[24]
Ang C. H., Garnett J. L., Levot R., Long M. A. Nicol K. Radiation and UV grafting of monomers to polyolefins and cellulose acetate. Significance of these studies in reagent insolubilization reactions. J. Macromol. Sci. Chem. 1982; 17(1):87-98.
[25]
Pashova V. S., Georgiev G. S., Dakov V. A. Photoinitiated graft copolymerization of glycidyl methacrylate and 2-hydroxyethyl methacrylate onto polyacrylonitrile and application of the synthesized graft copolymers in penicillin–amidase immobilization. J. Appl. Polym. Sci. 1994; 51(5):807-13.
[26]
Ranby B., Guo F. Z. "Surface-photografting": new applications to synthetic fibers. Polym. Avd. Technol. 1994; 5(12):829-36.