Biopolym. Cell. 2004; 20(1-2):159-163.
Antiproliferative activities of some 7-hydroxy-3-aryloxy-2-trifluoromethyl-4H-4-chromenone derivatives against 60 human cancer cell lines
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - Taras Shevchenko National University of Kyiv
64, Volodymyrska Str., Kyiv, Ukraine, 01033
Abstract
234 derivatives of 7-hydroxy-3-aryloxy-2-trifluoromethyl-4H-4-chromenones were synthesized and tested for antitumor activity in vitro against human cancer cell lines in NCI (National Cancer Institute, USA) bioassay. It was shown high cytostatic and cytotoxic activity for the tested compounds 1-8 (GI50 3.44-41.1 mM and LC50 from 49.6 mM). The relationship between structures of the tested compounds and their antiproliferative activities is discussed.
Full text: (PDF, in English)
References
[2]
van Acker FA, Hageman JA, Haenen GR, van Der Vijgh WJ, Bast A, Menge WM. Synthesis of novel 3,7-substituted-2-(3',4'-dihydroxyphenyl)flavones with improved antioxidant activity. J Med Chem. 2000;43(20):3752-60.
[3]
Owen RW, Giacosa A, Hull WE, Haubner R, Spiegelhalder B, Bartsch H. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer. 2000;36(10):1235-47.
[4]
Jing Y, Waxman S. Structural requirements for differentiation-induction and growth-inhibition of mouse erythroleukemia cells by isoflavones. Anticancer Res. 1995;15(4):1147-52.
[5]
Ren W, Qiao Z, Wang H, Zhu L, Zhang L, Lu Y, Cui Y, Zhang Z, Wang Z. Tartary buckwheat flavonoid activates caspase 3 and induces HL-60 cell apoptosis. Methods Find Exp Clin Pharmacol. 2001;23(8):427-32.
[6]
Wenzel U, Kuntz S, Brendel MD, Daniel H. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer Res. 2000;60(14):3823-31.
[7]
Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer. 1999;35(10):1517-25.
[8]
Ko WG, Kang TH, Lee SJ, Kim NY, Kim YC, Sohn DH, Lee BH. Polymethoxyflavonoids from Vitex rotundifolia inhibit proliferation by inducing apoptosis in human myeloid leukemia cells. Food Chem Toxicol. 2000;38(10):861-5.
[9]
Traxler P, Green J, Mett H, S?quin U, Furet P. Use of a pharmacophore model for the design of EGFR tyrosine kinase inhibitors: isoflavones and 3-phenyl-4(1H)-quinolones. J Med Chem. 1999;42(6):1018-26.
[10]
Geahlen RL, Koonchanok NM, McLaughlin JL, Pratt DE. Inhibition of protein-tyrosine kinase activity by flavanoids and related compounds. J Nat Prod. 1989;52(5):982-6.
[11]
Cushman M, Nagarathnam D, Burg DL, Geahlen RL. Synthesis and protein-tyrosine kinase inhibitory activities of flavonoid analogues. J Med Chem. 1991;34(2):798-806.
[12]
Srivastava AK. Inhibition of phosphorylase kinase, and tyrosine protein kinase activities by quercetin. Biochem Biophys Res Commun. 1985;131(1):1-5.
[13]
Lopez-Lazaro M1, Martin-Cordero C, Toro MV, Ayuso MJ. Flavonoids as DNA topoisomerase I poisons. J Enzyme Inhib Med Chem. 2002;17(1):25-9.
[14]
Lopez-Lazaro M, Martin-Cordero C, Ayuso MJ. Two new flavonol glycosides as DNA topoisomerase I poisons. Z Naturforsch C. 2000;55(11-12):898-902.
[15]
Gamet-Payrastre L, Manenti S, Gratacap MP, Tulliez J, Chap H, Payrastre B. Flavonoids and the inhibition of PKC and PI 3-kinase. Gen Pharmacol. 1999;32(3):279-86.
[16]
Agullo G, Gamet-Payrastre L, Manenti S, Viala C, Remesy C, Chap H, Payrastre B. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol. 1997;53(11):1649-57.
[17]
Ferriola PC, Cody V, Middleton E Jr. Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity relationships. Biochem Pharmacol. 1989;38(10):1617-24.
[18]
Sarno S, Moro S, Meggio F, Zagotto G, Dal Ben D, Ghisellini P, Battistutta R, Zanotti G, Pinna LA. Toward the rational design of protein kinase casein kinase-2 inhibitors. Pharmacol Ther. 2002;93(2-3):159-68.
[19]
Casagrande F, Darbon JM. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem Pharmacol. 2001;61(10):1205-15.
[20]
Losiewicz MD, Carlson BA, Kaur G, Sausville EA, Worland PJ. Potent inhibition of CDC2 kinase activity by the flavonoid L86-8275. Biochem Biophys Res Commun. 1994;201(2):589-95.
[21]
Thomas JP, Tutsch KD, Cleary JF, Bailey HH, Arzoomanian R, Alberti D, Simon K, Feierabend C, Binger K, Marnocha R, Dresen A, Wilding G. Phase I clinical and pharmacokinetic trial of the cyclin-dependent kinase inhibitor flavopiridol. Cancer Chemother Pharmacol. 2002;50(6):465-72.
[22]
Vasilev S. A., Luk'yanchykov M. S., Molchanov G. I., Turubarov V. D., Khilya V. P. Synthesis and biological properties of 3-phenoxychromones and 3-phenoxy-4-hydroxy- 7-methoxycumarine. Khim. pharm. zhurn. 1991; 7:34-38.
[23]
Arkhipov V. V., Smirnov M. N., Khilya V. P. Chemistry of modified flavonoids. 19. Synthesis of phenoxyl analogs of isoflavone. Chem Heterocycl Compd. 1997; 33(5):515-519
[24]
Garazd M. M., Arkhipov V. V., Proskurka N. K., Khilya V. P. Chemistry of heteroanalogs of isoflavones. 23. Synthesis of aminoacyl derivatives of 3-phenoxychromone. Chem Heterocycl Compd. 1999; 35(6):658-662.