Biopolym. Cell. 2004; 20(1-2):78-91.
Structural bioinformatics in post-genomic era
1Odynets K. A., 1Ivahno S. S., 1Kovalskyy D. B., 1Tokovenko B. T., 1Kornelyuk A. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Structural bioinformatics is a novel branch of biology which uses the computational methods of analysis with the aim of modeling the 3D structures of proteins and macromolecular complexes. The goal of structural bioinformatics research is also the creation of novel modulators of functional activities of proteins, such as novel drugs (drug design). Progress in structural bioinformatics is determined by the rapid growth in the deciphering of several hundreds of genomes of both prokaryotic and eukaryotic organisms and transition to post-genomic era. In this review some aspects of structural bioinformatics such as 3D structure modeling, proteomics and interactomics, bioinformatics in transcriptome analysis, molecular dynamics of proteins, protein-ligand interactions modeling and computer aided drug design are discussed. The development and applications of these methods for mammalian tyrosyl-tRNA synthetase and viral HIV-protease are discussed. The first Ukrainian web-portal BioUA devoted to the genomics and structural bioinformatics investigations is described in this review.

References

[1] Orengo CA, Jones DT, Thornton JM. Bioinformatics: Genes, proteins and computers. Oxford, BIOS. 2003; 298 p.
[2] Yu U, Lee SH, Kim YJ, Kim S. Bioinformatics in the post-genome era. J Biochem Mol Biol. 2004; 37 (1):75-82.
[3] Lindvall JM, Blomberg KE, Smith CI. In silico tools for signal transduction research. Brief Bioinform. 2003; 4 (4):315-24.
[4] Kellam P, Holzerlandt R, Gramoustianou E, Jenner R, Kwan A, DeGroot. Viral bioinformatics: Computational views of host and pathogen. Novartis Found Symp. 2003; 254:234-49.
[5] Wu TD. Bioinformatics in the post-genomic era. Trends Biotechnol. 2001; 19 (12):479-80.
[6] Eisenberg D, Marcotte EM, Xenarios I, Yeates TO. Protein function the post-genomic era. Nature. 2000; 405 (6788):823-6.
[7] Pruitt KD. WebWise: Guide to The Sanger Center's Web Site. Genome Res. 1998; 8 (1):4-8.
[8] Bernal A, Ear U, Kyrpides N. Genomes OnLine Database (GOLD): A monitor of genome projects world-wide. Nucleic Acids Res. 2001; 29 (1):126-7.
[9] Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, et al. The sequence of the human genome. Science. 2001; 291 (5507):1304-51.
[10] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-42.
[11] Wheeler DL, Church DM, Edgar R, Federhen S, Helmberg W, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Suzek TO, Tatusova TA, Wagner L. Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res. 2004;32(Database issue):D35-40.
[12] Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003; 31 (13):3784-8.
[13] Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: Update. Nucleic Acids Res. 2004;32(Database issue):D23-6.
[14] Kulikova T, Aldebert P, Althorpe N, Baker W, Bates K, Browne P, van den Broek A, Cochrane G, Duggan K, Eberhardt R, Faruque N, Garcia-Pastor M, Harte N, Kanz C, Leinonen R, Lin Q, Lombard V, Lopez R, Mancuso R, McHale M, Nardone F, Silventoinen V, Stoehr P, Stoesser G, Tuli MA, Tzouvara K, Vaughan R, Wu D, Zhu W, Apweiler R. The EMBL Nucleotide Sequence Database. Nucleic Acids Res. 2004;32(Database issue):D27-30.
[15] Boeckmann B1, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003; 31 (1):365-70.
[16] Chen J, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA, Liu C, Madej T, Marchler-Bauer A, Marchler GH, Mazumder R, Nikolskaya AN, Rao BS, Panchenko AR, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Vasudevan S, Wang Y, Yamashita RA, Yin JJ, Bryant SH. MMDB: Entrez's 3D-structure database. Nucleic Acids Res. 2003;31(1):474-7.
[17] Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis. 1997; 18 (15):2714-23.
[18] Koradi R, Billeter M, Wuthrich K. MOLMOL: A program for display and analysis of macromolecular structures. J Mol Graph. 1996; 14 (1):51-5.
[19] Martz E. Protein Explorer: Easy yet powerful macromolecular visualization. Trends Biochem Sci. 2002; 27 (2):107-9.
[20] Sayle RA, Milner-White EJ. RASMOL: Biomolecular graphics for all. Trends Biochem Sci. 1995; 20 (9):374-6.
[21] Odynets' KO, Kornelyuk OI. Methods of analysis and modeling of the spatial structure of proteins. Scientific Notes Kyiv Mogylyany. Academy. 2001; 19:7-17.
[22] Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995; 247 (4):536-40.
[23] Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM. CATH - A hierarchic classification of protein domain structures. Structure. 1997; 5 (8):1093-108.
[24] Shindyalov IN, Bourne PE. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engin. 1998; 11 (9):739-47.
[25] Holm L, Sander C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 1998; 26 (1):316-9.
[26] Dodge C, Schneider R, Sander C. The HSSP database of protein structure-sequence alignments and family profiles. Nucleic Acids Res. 1998) 26 (1):313-5.
[27] Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003; 31 (13):3381-5.
[28] Bates PA, Kelley LA, MacCallum RM, Sternberg MJE. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins. 2001;Suppl 5:39-46.
[29] Combet C, Jambon M, Deleage G, Geourjon C. Geno3D: Automatic comparative molecular modelling of protein. Bioinformatics. 2002;18(1):213-4.
[30] Iwadatc A, Kmoak Ua S, Vmeyama U. FAMS and FA-MSBASE: Modeling of all the genomes and database. Genome Inform. 2002; 13:565-6.
[31] Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000; 29:291-325.
[32] Vriend G. WHAT IF: A molecular modeling and drug design program. J Mol Graph. 1990;8(1):52-6, 29.
[33] Canutescu AA, Shelenkov AA, Dunbrack Jr, RL. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 2003; 12 (9):2001-14.
[34] Kelley LA, MacCallum RM, Sternberg MJE. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol. 2000; 299 (2):499-520.
[35] Rychlewski L, Jaroszewski L, Li W, Godzik A. Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci. 2000. 9 (2):232-41.
[36] Shi J, Blundell TL, Mizuguchi K. FUGUE: Sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol. 2001; 310 (1):243-57.
[37] Meller J, Elber R. Linear programming optimization and a double statistical filter for protein threading protocols. Proteins. 2001; 45 (3):241-61.
[38] Bystroff C, Thorsson V, Baker D. HMMSTR: A hidden Markov model for local sequence-structure correlations in proteins. J Mol Biology. 2000; 301(1):173-90.
[39] Melo F, Feytmans E. Assessing protein structures with a non-local atomic interaction energy. J Mol Biol. 1998; 277 (5):1141-52.
[40] Colovos C, Yeates TO. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993; 2 (9):1511-9.
[41] Laskowski RA, Macarthur MW, Moss DS, Thornton JM. PROCHECK: A program to check Ihe stereochemical quality of protein structures. J Appl Crysl. 1993; 26: 283-91.
[42] Luthy R, Bowie JU, Eisenberg D. Assesment of protein models with three-dimensional profiles. Nature. 1992; 356 (6364):83-5.
[43] Hooft RWW, Vriend G, Sander C, Abola EE. Errors in protein structures. Nature. 1996; 381 (6580):272.
[44] Johnson MS, Lehtonen JV. Comparison of protein three-dimensional structures. Bioinformatics: Sequence, Structure, and Databanks: A Practical Approach. Eds D Higgins, W Taylor. Oxford, Univ. press. 2002; 15-50.
[45] Taylor WR, Orengo CA. Protein structure alignment. J Mol Biol. 1989; 208 (1):1-22.
[46] Orengo CA, Brown NP, Taylor WR. Fast structure alignment for protein databank searching. Proteins. 1992; 14 (2):139-67.
[47] Orengo CA, Jones DT, Thornton JM. Protein superfamilies and domain superfolds. Nature. 1994; 372 (6507):631-4.
[48] Madej T, Gibrat J-F, Bryant SH. Threading a database of protein cores. Proteins. 1995; 23 (3:356-69.
[49] Russell RB, Barton GJ. Multiple protein sequence alignment from tertiary structure comparison: Assignment of global and residue confidence levels. Proteins. 1992; 14 (2):309-23.
[50] Golub AG, Odynets KA, Nyporko AYu, Konelyuk AI. Structure modeling of the COOH-terminal cytokine-like module of the mammalian cytoplasmic tyrosyl-tRNA synthetase. Biopolym. Cell. 2000; 16(6):515-524
[51] Odynets KA, Bazylevskyi OE, Kornelyuk AI. Homology modeling of structure of NH2-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase. Biopolym Cell. 2002; 18 (6):547-50.
[52] Kanibolotskiy DS, Odynets KA, Skurskiy SI, Kornelyuk AI. Study of intramolecular mobility of cytokine-like C-terminal module of tyrosyl-mammalian tRNA synthetase by molecular dynamics. Physics live. 2003. 11(2):61 - 71.
[53] Korneliuk AI, Kurochkin IV, Matsuka GKh. Tyrosyl-tRNA synthetase from the bovine liver. Isolation and physico-chemical properties. Mol Biol (Mosk). 1988;22(1):176-86.
[54] Gnatenko D. V., Kornelyuk A. I., Kurochkin I. V., Matsuka G. H. High molecular weight complex of tyrosyl-tRNA synthetase from bovine liver. Biopolym. Cell. 1991; 7(1):63-69
[55] Gnatenko DV, Korneliuk AI, Kurochkin IV, Ribkinska TA, Matsuka GKh. Isolation and characteristics of functionally active proteolytically modified forms of tyrosyl-tRNA synthetase from bovine liver. Ukr Biokhim Zh. 1991;63(4):61-7.
[56] Klimenko I. V., Kornelyuk A. I., Matsuka G. Kh. Conformational change of tyrosyl-tRNA synthetase from bovine liver in the course of cognate tRNA binding revealed from fluorescence spectroscopy data. Biopolym. Cell. 1993; 9(6):31-35.
[57] Kornelyuk AI, Klimenko IK, Odynets KA. Conformational change of mammalian tyrosyl-tRNA synthetase induced by tyrosyl adenylate formation. Biochem Mol Biol Int. 1995;35(2):317-22.
[58] Kalachniuk LH, Korneliuk OI, Matsuka HKh. Tyrosine tRNA(Q*psiA) from bovine liver. Identification of its sites of interaction with homologous aminoacyl-trna synthetase using chemical modification. Ukr Biokhim Zh. 1995;67(5):60-5.
[59] Levanets O. V., Naidenov V. G., Woodmaska M. I., Odynets K. A., Matsuka G. H., Kornelyuk A. I. PCR amplification, cloning and sequencing of cDNA fragment encoding a nucleotide binding domain of mammalian tyrosyl-tRNA synthetase Biopolym. Cell. 1996; 12(5):66-71.
[60] Levanets O. V., Naidenov V. G., Woodmaska M. I., Matsuka G. H., Kornelyuk A. I. Cloning of cDNA encoding C-terminal part of mammalian tyrosyl-tRNA synthetase using of PCR-amplified radioactive probe. Biopolym. Cell. 1997; 13(2):121-126
[61] Levanets O. V., Naidenov V. G., Odynets K. A., Woodmaska M. I., Matsuka G. Kh., Kornelyuk A. I. Homology of C-terminal non-catalytic domain of mammalian tyrosyl-tRNA synthetase with cylokine EMAP II and non-catalytic domains of methionyl- and phenylalanyl-tRNA synthetases. Biopolym. Cell. 1997; 13(6):474-478
[62] Dubrovsky A. L., Savinskaya L. A., Kornelyuk A. I. Cloning and bacterial expression of the cytokine-like noncatalytic domain of bovine tyrosyl-tRNA synthetase. Biopolym. Cell. 1998; 14(5):449-52
[63] Kornelyuk A. I. Structural and functional investigation of mammalian tyrosyl-tRNA synthetase. Biopolym. Cell. 1998; 14(4):349-359
[64] Kornelyuk A. I. Protein engineering Biopolym. Cell. 2001; 17(6):459-466
[65] Kornelyuk, A.I., Tas, M., Dubrovsky, A., Murray, J.C. Cytokine activity of the non-catalytic EMAP 2-like domain of mammalian tyrosyl-tRNA synthetase (1999) Biopolym. Cell. 15 (2), pp. 168-172.
[66] Naidenov V. G., Vudmaska M. I., Kornelyuk A. I., Matsuka G. Kh. Site-directed mutagenesis of lysine residues located in the connection peptide of the nucleotide-binding domain (Rossman fold) of tyrosyl-tRNA synthetase from bovine liver. Biopolym. Cell. 2000; 16(4):275-280
[67] Froimowitz, M. HyperChem(TM): A software package for computational chemistry and molecular modeling. Biotechniques. 1993;14(6):1010-3.
[68] Hogue CW. Structure databases. Methods Biochem Anal. 2001;43:83-109.
[69] Renault L, Kerjan P, Pasqualato S, M?n?trey J, Robinson JC, Kawaguchi S, Vassylyev DG, Yokoyama S, Mirande M, Cherfils J. Structure of the EMAPII domain of human aminoacyl-tRNA synthetase complex reveals evolutionary dimer mimicry. EMBO J. 2001;20(3):570-8.
[70] Yaug X.-L., Liu J., Skene R.J., McRee D.E., Schimmel P. Crystal structure of an EMAP-II-like cytokine released from a human tRNA synthetase Helvetica Chimica Acta. 2003;86 (4): 1246-1257.
[71] Kawaguchi S, M?ller J, Linde D, Kuramitsu S, Shibata T, Inoue Y, Vassylyev DG, Yokoyama S. The crystal structure of the ttCsaA protein: an export-related chaperone from Thermus thermophilus. EMBO J. 2001;20(3):562-9.
[72] Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics. 2003;19(1):163-4.
[73] Bakti P., Hatfield G.W. DNA Microarrays and Gene Expression: From Experiments to Data Analysis Modeling. Cambridge: Univ. press(2002)
[74] Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science. 1995;270(5235):484-7.
[75] Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467-70.
[76] Heller M.J. DNA microarray technology: Devices, systems, and applications . Annu Rev Biomed Eng. 2002;4:129-53.
[77] Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science. 1991;251(4995):767-73.
[78] Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. High density synthetic oligonucleotide arrays. Nat Genet. 1999;21(1 Suppl):20-4.
[79] Basarsky T., Verdnik D., Zhai J.Y., Weltis D. Overview of a microarray scanner: Design essentials for an integrated acquisition and analysis platrorm Microarray Biochip Technology, Ed. M. Schena New York: Eaton Publ.2000; 265-284.
[80] Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A. 1999;96(12):6745-50.
[81] Miki R, Kadota K, Bono H, Mizuno Y, Tomaru Y, Carninci P, Itoh M, Shibata K, Kawai J, Konno H, Watanabe S, Sato K, Tokusumi Y, Kikuchi N, Ishii Y, Hamaguchi Y, Nishizuka I, Goto H, Nitanda H, Satomi S, Yoshiki A, Kusakabe M, DeRisi JL, Eisen MB, Iyer VR, Brown PO, Muramatsu M, Shimada H, Okazaki Y, Hayashizaki Y. Delineating developmental and metabolic pathways in vivo by expression profiling using the RIKEN set of 18,816 full-length enriched mouse cDNA arrays. Proc Natl Acad Sci U S A. 2001;98(5):2199-204.
[82] Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC, Trent JM, Staudt LM, Hudson J Jr, Boguski MS, Lashkari D, Shalon D, Botstein D, Brown PO. The transcriptional program in the response of human fibroblasts to serum. Science. 1999;283(5398):83-7.
[83] Quackenbush J. Computational analysis of microarray data. Nat Rev Genet. 2001;2(6):418-27.
[84] Ivakhno SS, Korneliuk OI. Microarrays: technologies overview and data analysis. Ukr Biokhim Zh. 2004;76(2):5-19.
[85] Dagkessamanskaia A, Martin-Yken H, Basmaji F, Briza P, Francois J. Interaction of Knr4 protein, a protein involved in cell wall synthesis, with tyrosine tRNA synthetase encoded by TYS1 in Saccharomyces cerevisiae. FEMS Microbiol Lett. 2001;200(1):53-8.
[86] Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001;98(8):4569-74.
[87] Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto K, Kuhara S, Sakaki Y. Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci U S A. 2000;97(3):1143-7.
[88] Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000;403(6770):623-7.
[89] Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A. 1999;96(8):4285-8.
[90] Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001;29(1):22-8.
[91] Bork P, Dandekar T, Diaz-Lazcoz Y, Eisenhaber F, Huynen M, Yuan Y. Predicting function: from genes to genomes and back. J Mol Biol. 1998;283(4):707-25.
[92] Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N. The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A. 1999;96(6):2896-901.
[93] Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA. Protein interaction maps for complete genomes based on gene fusion events. Nature. 1999;402(6757):86-90.
[94] Eisenberg D, Marcotte EM, Xenarios I, Yeates TO. Protein function in the post-genomic era. Nature. 2000;405(6788):823-6.
[95] Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. Detecting protein function and protein-protein interactions from genome sequences. Science. 1999;285(5428):751-3.
[96] Jaffa J., Robinson M., Bubeck D. Biophysics Final Project. New York 1999.
[97] Bock JR, Gough DA. Predicting protein--protein interactions from primary structure. Bioinformatics. 2001;17(5):455-60.
[98] Tokovenko BT, Odynets' KO, Kornelyuk OI. Analysis of protein-protein interactions of tyrosyl-tRNA synthetases using bioinformatics. Days of Kyiv-Mohyla Academy of Science: Science. Notes of Kyiv-Mohyla Academy. 2003, 22 (pt 3) :376-9.
[99] Li S, Armstrong C.M., Bertin N., Ge H., Milstein S., Boxem M., Vidalain P.-O., et al. A Map of the Interactome Network of the Metazoan C. Science. 2004;303(5657):540-3.
[100] Bolser D, Dafas P, Harrington R, Park J, Schroeder M. Visualisation and graph-theoretic analysis of a large-scale protein structural interactome. BMC Bioinformatics. 2003;4:45.
[101] Lindahl E., Hess B., van der Spoel D. GROMACS 3.0: A package for molecular simulation and trajectory analysis Journal of Molecular Modeling, 2001; 7 (8):306-317.
[102] Echols N, Milburn D, Gerstein M. MolMovDB: analysis and visualization of conformational change and structural flexibility. Nucleic Acids Res. 2003;31(1):478-82.
[103] Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33-8, 27-8.
[104] Kovalsky D. B., Kornelyuk A. I. Conformational changes in HIV-1 protease: molecular dynamic simulation study in picoseond and nanosecond timescales Biopolym. Cell. 2002; 18(2):117-123
[105] Koval'skii DB1, Kanibolotskii DS, Dubina VN, Korneliuk AI. Conformational changes in HIV-1 proteinase: effect of protonation of the active center on conformation of HIV-1 proteinase in water. Ukr Biokhim Zh. 2002;74(6):135-8.
[106] Koval'skii DB, Ivanova OS, Dubina VN, Kanibolotskii DS, Korneliuk AI. Generalized ordering parameter S2 for N-H peptide bonding as measure of the conformational flexibility of proteins: comparison of algorithms of S2 calculation from molecular dynamics simulation data. Ukr Biokhim Zh. 2004;76(2):128-32.
[107] Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function Journal of Computational Chemistry, (1998) 19 (14), pp. 1639-1662.
[108] Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins. 2003;52(4):609-23.
[109] Kramer B, Rarey M, Lengauer T. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins. 1999;37(2):228-41.
[110] Pearlman D.A., Case D.A., Caldwell J.W., Ross W.S., Cheatham III T.E., DeBolt S., Ferguson D., Seibel G, Kollman P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 1995; 91 (1-3):1-41.
[111] Bohm, H.-J. The computer program LUDI: A new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des. 1992;6(1):61-78.
[112] Smith GR, Sternberg MJ; CAPRI blind trial. Evaluation of the 3D-Dock protein docking suite in rounds 1 and 2 of the CAPRI blind trial. Proteins. 2003;52(1):74-9.
[113] Ritchie DW. Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins. 2003;52(1):98-106.
[114] Krippahl L, Moura JJ, Palma PN. Modeling protein complexes with BiGGER. Proteins. 2003;52(1):19-23.
[115] Vakser IA. Evaluation of GRAMM low-resolution docking methodology on the hemagglutinin-antibody complex. Proteins. 1997;Suppl 1:226-30.
[116] Chen R, Li L, Weng Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins. 2003;52(1):80-7.