Biopolym. Cell. 2004; 20(1-2):62-70.
Proton acceptor and proton donor properties of modified nucleotide bases and their complexing ability: quantum chemical investigation
1Potyahaylo A. L., 1Stepanyugin A. V., 1Samijlenko S. P., 1Hovorun D. M.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Proton acceptor and proton donor properties of 40 modified nucleotide bases have been investigated by the AM1 semiempirical quantum chemical method, proven to be rather good for such tasks and matters. Based on the data obtained, the orders of the acidity and basicity have been built. The authors have also concluded about the character of self- and hetero-association of some modified nucleotide bases and their specific interactions with both neutral and deprotonated carboxylic groups of amino acids in vacuum. Biological significance of these findings is briefly discussed.

References

[1] Saenger W. Principles of nucleic acids structure. New York etc., Springer, 1984; 556 p.
[2] Zarudna MI, Hovorun DM. Self-associated homopolymer tracts of cellular RNAs: physical mechanisms of formation and function. Physics of the Alive. 1999; 7(2): 38-52.
[3] Hovorun DM. Physico-chemical mechanisms of biomolecular recognition. Thesis for the Doctor of sciences. Kyiv, 1999; 34 p.
[4] Hovorun DM. The prototropic tautomerism of nitrogen bases: a new insight into the old problem Biopolym. Cell. 1997; 13(3):191-196
[5] Samijlenko SP, Kondratyuk IV, Potyahaylo AL, Stepanyugin AV, Hovorun DM. Specific interactions of deprotonated carboxylic group with uracil and thymine provoke diketo-->keto-enol tautomeric transition in bases. Ukr Biokhim Zh. 2001;73(4):128-31.
[6] Govorun DM, Kondratyuk IV, Zheltovsky NV. Acidic-basic properties of molecular xanthine and its complex formation ability. Biopolym. Cell. 1994; 10(6):61-64
[7] Govorun DM, Kondratyuk IV, Zheltovsky NV. Acidic-basic properties of molecular hypoxanthine in vacuum. Biopolym. Cell. 1995; 11(1):36-39
[8] Govorun DM, Kondratyuk IV, Zheltovsky NV. The influence of protonation and deprotonation, on the acidic-basic properties of purine, pyrimidine and imidazole. Biopolym. Cell. 1995; 11(3-4):29-34
[9] Govorun DM, Kondratyuk IV, Zheltovsky NV. Acidic-basic properties of pyrimidine, imidazole and purine in vacuum: calculation by AMI method. Biopolym. Cell. 1995; 11(5):21-23.
[10] Hovorun DM, Kondratyuk IV. Gas-phase acid-alkaline properties of canonical nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1998; (1):207-12.
[11] Govorun DM, Kondratyuk IV, Zheltovsky NV. Nucleotide bases as CH-Acids. Biopolym Cell. 1995; 11(5):15-20.
[12] Handbook of biochemistry and molecular biology. Nucleic Acids Ed. GD Fasman Boca Ralon, CRC press, 1986; 1:637 p.
[13] Adams RLP. DNA methylation. The effect of minor bases on DNA-protein interactions. Biochem. J. 1990; 265(2):309-20.
[14] Samijlenko SP, Alexeeva IV, Palchykivs'ka LH, Kondratyuk IV, Stepanyugin AV, Shalamay AS, Hovorun DM. 1H NMR investigation on 6-azacytidine and its derivatives. Spectrochim. Acta - Part A: Mol Biomol Spectrosc. 1999; 55(5):1133-41.
[15] Samijlenko SP, Alexeeva IV, Palchykivs'ka LH, Kondratyuk IV, Stepanyugin AV, Shalamay AS, Hovorun DM. Structural peculiarities of 6-azacytosine and its derivatives imply intramolecular H-bonds. J Mol Struct. 1999; 484(1-3):31-8.
[16] Kondratyuk IV, Samijlenko SP, Kolomiets IM, Potyahaylo AL, Hovorun DM. Prototropic molecular-zwitterionic tautomerism of xanthine and hypoxanthine: unexpected biological view. Biopolym Cell. 2000; 16(2):124-137
[17] Kondratyuk IV, Samijlenko SP, Kolomiets' IM, Hovorun DM. Prototropic molecular-zwitterionic tautomerism of xanthine and hypoxanthine. J Mol Struct. 2000; 523(1-3):109-18.
[18] Hovorun DM. A physico-chemical concept of biopolymers' functioning. Dopovidi Nats Akad Nauk Ukrainy. 2000; (2):171-5
[19] Norinder U. A theoretical reinvestigation of the nucleic bases adenine, guanine, cytosine, thymine and uracil using AM1. J Mol Struct: THEOCHEM. 1987; 151(C):259-69.
[20] Zarudnaya MI, Potyahaylo AL, Hovorun DM. Conformational transitions of poly(C) and poly(dC): study by the proton buffer capacity method. Biopolym Cell. 2000; 16(6):495-504.
[21] Zarudnaya MI, Samijlenko SP, Potyahaylo AL, Hovorun DM. Structural transitions in polycytidylic acid: Proton buffer capacity data. Nucleosides Nucleotides Nucleic Acids. 2002; 21 (2):125-37.
[22] Zheltovsky NV, Samiylenko SP, Kolomiets IN, Kondratyuk IV, Stepanyugin AV. The investigation of interactions of hypoxanthine, xanthine and their methyl and glycosyl derivatives with amino acid carboxylic group by spectroscopic methods. Biopolym. Cell. 1993; 9(3):17-22.
[23] Zheltovsky NV, Samoilenko SA, Kondratyuk IV, Kolomiets IN, Stepanyugin AV. Recognition of purine bases and nucleosides by the amino acid carboxylic group. J Mol Struct. 1995; 344 (1-2):53-62.
[24] Samijlenko SP, Kolomiets IM, Kondratyuk IV, Stepanyugin AV. Model considerations on physico-chemical nature of protein-nucleic acid contacts through amino acid carboxylic groups: spectroscopic data. Biopolym Cell. 1998; 14(1):47-53.
[25] Bruskov VI. Model systems protein-nucleic acid recognition: Author. dis. ... Dr. biol. Sciences. Moscow, Moscow State University, 1990; 38 p.
[26] Furuichi Y, Shatkin AJ. Viral and cellular mRNA capping: Past and prospects Adv Virus Res. 2000; 55;135-84. ISBN: 0120398559; 978-012039855-3