Biopolym. Cell. 2003; 19(6):504-512.
Structure and Function of Biopolymers
2D 1H-NMR analysis of complexation of phenoxazone compound actinocyl-bis-(2-dimethylaminoethyl) amide with deoxytetranucleotide 5'-d(TpGpCpA) in aqueous solution
1Veselkov A. N., 2Eaton R. J., 1Lantushenko A. O., 1Rogova O. V., 3Hernandez Santiago A., 2Davies D. B.
  1. Sevastopol National Technical University
    33, Universytetska Str., Sevastopol, Ukraine, 99053
  2. Birkbeck, University of London
    Malet Str., Bloomsbury, London WC1E 7HX, UK
  3. Autonomous University of Puebla
    Puebla, Mexico, 72570

Abstract

Complexation of a synthetic phenoxazone compound actinocyl-bis-(2-dimethylaminoethyl) amide (ActII) with self-complementary deoxytetranucleotide 5'-d(TpGpCpA) in aqueous solution has been studied by two-dimensional 1H-NMR spectroscopy (500 MHz). Two-dimensional homonuclear correlation NMR spectroscopy (2D-TOCSY and 2D-NOESY) has been used for complete assignment of proton signals of phenoxazone compound and nucleotides in the mixed solution and for determining the structure of the intercalated complex of ActII with the tetramer duplex. Analysis of inter-molecular NOE-contacts enables to conclude that ActII preferentially intercalates into the terminal d(TG)-site of the tetranucleotide and to propose the most favourable spatial structures of ActII-d(TpGpCpA) complexes. It follows that aminoalkyl side chains of ActII are situated in the minor groove of the tetramer duplex.

References

[1] Anti-cancer drug design: biological and biophysical aspects of synthetic phenoxazone derivatives. Eds A. N. Veselkov, D. B. Davies. London: SevNTU press, 2002. 259p.
[2] Karawajew L, Glibin EN, Maleev VY, Czerwony G, D?rken B, Davies DB, Veselkov AN. Role of crown-like side chains in the biological activity of substituted-phenoxazone drugs. Anticancer Drug Des. 2000;15(5):331-8.
[3] Zee-Cheng RKY, Cheng CC. Antineoplastic agents. Structure-activity relationship study of bis(substituted aminoalkylamino)anthraquinones. J Med Chem. 1978;21(3):291–4.
[4] Denny WA, Wakelin LP. Kinetics of the binding of mitoxantrone, ametantrone and analogues to DNA: relationship with binding mode and anti-tumour activity. Anticancer Drug Des. 1990;5(2):189-200.
[5] Graves DE, Velea LM. Intercalative Binding of Small Molecules to Nucleic Acids. Curr Org Chem. 2000;4(9):915–29.
[6] Davies DB, Baranovsky SF, Veselkov AN. Structural and thermodynamical analysis of drug binding to single-stranded DNA oligomers Self-association of non-self-complementary deoxytetranucleotides of different base sequence and their complexation with ethidium bromide in aqueous solution. Faraday Trans. 1997;93(8):1559–72.
[7] Davies DB, Eaton RJ, Baranovsky SF, Veselkov AN. NMR investigation of the complexation of daunomycin with deoxytetranucleotides of different base sequence in aqueous solution. J Biomol Struct Dyn. 2000;17(5):887-901.
[8] Veselkov AN, Eaton RJ, Semanin AV, Pakhomov VI, Dymant LN, Karavaev L, Davies DV. [NMR study of complex formation of aromatic ligands with heptadeoxynucleotide 5'-d(GCGAAGC) forming stable hairpin structure in aqueous solution]. Mol Biol (Mosk). 2002;36(5):880-90.
[9] Glibin EN, Plekhanova NG, Ovchinnikov DV, Korshunova ZI. Synthesis of Actinomycin Analogs. XX. Actinocin Amides Containing Crown-Ether Moieties. Russian Journal of Organic Chemistry 1996; 32(3):387-389.
[10] Glibin EN, Ovchinnikov DV, Plekhanova NG. Synthesis of Actinomycin Analogs. XXI. Benzocrown-4'ylcarbamoylalkylamides of Actinocin. Russian Journal of Organic Chemistry. 1997; 33(10):1494-7
[11] Veselkov AN, Lantushenko AO, Rogova OV, Veselkov DA, Davies DB. Thermodynamic analysis of self-association of actinocin Bis(2-dimethylaminoethyl)amide in aqueous solution by 1H NMR spectroscopy. Russian Journal of Organic Chemistry. 2003; 39(1): 87-91.
[12] Veselkov AN, Djimant LN, Kodinzec VV, Lisutin VA, Parkes H, Davies D. 1H-NMR investigation of deoxytetranucleoside triphosphates D(TpGpCpA) self-association in aqueous solution. Biofizika. 1995; 40(2):283-92.
[13] Wijmenga SS, Mooten MW, Hilberts CW. NMR of nucleic acids: from spectrum to structure. NMR of macromolecules. A practical approach. London: Oxford Univ. press, 1993. 437 p.
[14] Davies DB, Veselkov AN. Structural and thermodynamical analysis of molecular complexation by 1H NMR spectroscopy. Intercalation of ethidium bromide with the isomeric deoxytetranucleoside triphosphates 5?-d(GpCpGpC) and 5?-d(CpGpCpG) in aqueous solution. Faraday Trans.1996;92(19):3545-57.
[15] Davies DB, Karawajew L, Veselkov AN. 1H-NMR structural analysis of ethidium bromide complexation with self-complementary deoxytetranucleotides 5'-d(ApCpGpT), 5'-d(ApGpCpT), and 5'-d(TpGpCpA) in aqueous solution. Biopolymers. 1996;38(6):745-57.
[16] Davies DB, Pahomov VI, Veselkov AN. NMR determination of the conformational and drug binding properties of the DNA heptamer d(GpCpGpApApGpC) in aqueous solution. Nucleic Acids Res. 1997;25(22):4523-31.
[17] Reid BR, Banks K, Flynn P, Nerdal W. NMR distance measurements in DNA duplexes: sugars and bases have the same correlation times. Biochemistry. 1989;28(26):10001-7.
[18] Scott EV, Jones RL, Banville DL, Zon G, Marzilli LG, Wilson WD. 1H and 31P NMR investigations of actinomycin D binding selectivity with oligodeoxyribonucleotides containing multiple adjacent d(GC) sites. Biochemistry. 1988;27(3):915-23.
[19] Scott EV, Zon G, Marzilli LG, Wilson WD. 2D NMR investigation of the binding of the anticancer drug actinomycin D to duplexed dATGCGCAT: conformational features of the unique 2:1 adduct. Biochemistry. 1988;27(20):7940-51.
[20] Chou SH, Chin KH, Chen FM. Looped out and perpendicular: deformation of Watson-Crick base pair associated with actinomycin D binding. Proc Natl Acad Sci U S A. 2002;99(10):6625-30.
[21] Anishchenko DB, Bereznyak EG, Shestopalova AV, Maleev VYa. The study of molecular mechanisms of interaction of caffeine and actinocin derivatives with DNA molecular dynamics method. I. Investigation of the structure of monomeric and dimeric forms of derivative actinocin in ion-hydrated environment. Biophys Vestn. Kharkov. Nat. Univ. 2002. 1(10): 36-41.