Biopolym. Cell. 2003; 19(6):492-498.
Structure and Function of Biopolymers
3D structure model for the principal neutralizing determinant of the HIVThailand protein gp120
- Institute of Bioorganic Chemistry, NAS of Belarus
5/2, Kuprevich Str., Minsk, Republic of Belarus, 220141
Abstract
3D structurl model for Hit; principal neutralizing determinant of the HIVThailand protein gp120 has been proposed on the basis of NMR spectroscopy data reported in literature. The elements of the protein secondary structure and conformations of the irregular segments have been determined. The conformational flexibility of a fragment forming the virus immunodominant epitope is studied. The results obtained are discussed conjointly with the data on the spatial structure of the HIVMN protein gp120 homologous site.
Full text: (PDF, in Russian)
References
[1]
Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem. 1990;265(18):10373-82.
[2]
LaRosa GJ, Davide JP, Weinhold K, Waterbury JA, Profy AT, Lewis JA, Langlois AJ, Dreesman GR, Boswell RN, Shadduck P, et al. Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science. 1990;249(4971):932-5.
[3]
Pau CP, Kai M, Holloman-Candal DL, Luo CC, Kalish ML, Schochetman G, Byers B, George JR. Antigenic variation and serotyping of HIV type 1 from four World Health Organization-sponsored HIV vaccine sites. WHO Network for HIV Isolation and Characterization. AIDS Res Hum Retroviruses. 1994;10(11):1369-77.
[4]
Gaschen B, Taylor J, Yusim K, Foley B, Gao F, Lang D, Novitsky V, Haynes B, Hahn BH, Bhattacharya T, Korber B. Diversity considerations in HIV-1 vaccine selection. Science. 2002;296(5577):2354-60.
[5]
Vranken WF, Fant F, Budesinsky M, Borremans FA. Conformational model for the consensus V3 loop of the envelope protein gp120 of HIV-1 in a 20% trifluoroethanol/water solution. Eur J Biochem. 2001;268(9):2620-8.
[6]
Huisman JG, Carotenuto A, Labrijn AF, Papavoine CH, Laman JD, Schellekens MM, Koppelman MH, Hilbers CW. Recognition properties of V3-specific antibodies to V3 loop peptides derived from HIV-1 gp120 presented in multiple conformations. Biochemistry. 2000;39(35):10866-76.
[7]
Wu G, MacKenzie R, Durda PJ, Tsang P. The binding of a glycoprotein 120 V3 loop peptide to HIV-1 neutralizing antibodies. Structural implications. J Biol Chem. 2000;275(47):36645-52.
[8]
Andrianov AM. Global and local structural properties of the principal neutralizing determinant of the HIV-1 envelope protein gp120. J Biomol Struct Dyn. 1999;16(4):931-53.
[9]
Chandrasekhar K, Profy AT, Dyson HJ. Solution conformational preferences of immunogenic peptides derived from the principal neutralizing determinant of the HIV-1 envelope glycoprotein gp120. Biochemistry. 1991;30(38):9187-94.
[10]
Sherman SA, Andrianov AM, Akhrem AA. Method of modeling protein structure by the two-dimensional nuclear magnetic resonance spectroscopy data; application to the proteinase inhibitor BUSI IIA from bull seminal plasma. J Biomol Struct Dyn. 1988;5(4):785-801. ttp://
[11]
Sherman SA, Andrianov AM, Akhrem AA. Conformational analysis and the establishment of the spatial structure of protein molecules. Minsk : Nauka i tekhnika, 1989. 240 p.
[12]
Sherman SA, Andrianov AM, Akhrem AA. Method of determining protein conformations by the two-dimensional nuclear Overhauser enhancement spectroscopy data. J Biomol Struct Dyn. 1987;4(5):869-84.
[13]
Andrianov AM, Sherman SA. Promises of combined use of molecular mechanics and nuclear Overhauser effect spectroscopy data in modelling spatial peptide and protein structures. Stud biophys. 1990; 135:107-14.
[14]
Andrianov AM. Conformational analysis of protein side chains using two-dimensional Overhauser nuclear effect spectroscopy. Mol Biol (Mosk). 1991;25(2):348-57.
[15]
Sherman SA, Johnson ME. Determination of locally accurate solution protein structures and unambiguous stereospecific 1H-NMR assignments. Proteins: Structure, dynamics and design. Eds V. Renugopalakrishman, P. R. Carey, I. C. P. Smith, S. G. Huang, A. C. Storer. Leiden: Esom Sci. Publ., 1991: 62-7.
[16]
Andrianov AM. Structure and conformational properties of the HIV Thailand gp120 immunodominant epitope. Mol Biol (Mosk). 2002;36(4):715-24.
[17]
Andrianov AM. Local structural properties of the V3 loop of Thailand HIV-1 isolate. J Biomol Struct Dyn. 2002;19(6):973-89.
[18]
Gupta G, Anantharamaiah GM, Scott DR, Eldridge JH, Myers G. Solution structure of the V3 loop of a Thailand HIV isolate. J Biomol Struct Dyn. 1993;11(2):345-66.
[19]
Javaherian K, Langlois AJ, LaRosa GJ, Profy AT, Bolognesi DP, Herlihy WC, Putney SD, Matthews TJ. Broadly neutralizing antibodies elicited by the hypervariable neutralizing determinant of HIV-1. Science. 1990;250(4987):1590-3.
[20]
Sherman SA, Johnson ME. Derivation of locally accurate spatial protein structure from NMR data. Prog Biophys Mol Biol. 1993;59(3):285-339.
[21]
Andrianov AM. Conformation of the third domain of turkey ovomucoid in solution. Structural analysis by two-dimensional Overhauser nuclear effect spectroscopy. Mol Biol (Mosk). 1991;25(5):1215-25.
[22]
W?thrich K, Wider G, Wagner G, Braun W. Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. J Mol Biol. 1982;155(3):311-9.
[23]
W?thrich K. Sequential individual resonance assignments in the 1H-nmr spectra of polypeptides and proteins. Biopolymers. 1983;22(1):131-8.
[24]
Popov EM. Structural organization of proteins. M.: Nauka, 1989. 352 p.
[25]
Momany FA, McGuire RF, Burgess AW, Scheraga HA. Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J Phys Chem. 1975;79(22):2361-81.
[26]
Sharman SA. KOMPAS-86 complex software and algorithmic tools for the study of the spatial structure of proteins and peptides. Application description and recommendations for use. Computer software. Minsk: Publ Inst Mathemat, 1986; Iss 68:5-30.
[27]
Fletcher R, Powell MJD. A Rapidly Convergent Descent Method for Minimization. Comp J. 1963;6(2):163–8.
[28]
Smith LJ, Bolin KA, Schwalbe H, MacArthur MW, Thornton JM, Dobson CM. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol. 1996;255(3):494-506.
[29]
Lewis PN, Momany FA, Scheraga HA. Chain reversals in proteins. Biochim Biophys Acta. 1973;303(2):211-29.
[30]
Milner-White E, Ross BM, Ismail R, Belhadj-Mostefa K, Poet R. One type of gamma-turn, rather than the other gives rise to chain-reversal in proteins. J Mol Biol. 1988;204(3):777-82.
[31]
Isogai Y, N?methy G, Rackovsky S, Leach SJ, Scheraga HA. Characterization of multiple bends in proteins. Biopolymers. 1980;19(6):1183-210.
[32]
Smith JA, Pease LG. Reverse turns in peptides and proteins. CRC Crit Rev Biochem. 1980;8(4):315-99.
[33]
Vranken WF, Budesinsky M, Fant F, Boulez K, Borremans FA. The complete Consensus V3 loop peptide of the envelope protein gp120 of HIV-1 shows pronounced helical character in solution. FEBS Lett. 1995;374(1):117-21.
[34]
Ghiara JB, Stura EA, Stanfield RL, Profy AT, Wilson IA. Crystal structure of the principal neutralization site of HIV-1. Science. 1994;264(5155):82-5.
[35]
Ghiara JB, Ferguson DC, Satterthwait AC, Dyson HJ, Wilson IA. Structure-based design of a constrained peptide mimic of the HIV-1 V3 loop neutralization site. J Mol Biol. 1997;266(1):31-9.