Biopolym. Cell. 2003; 19(5):451-456.
Molecular Mechanisms of Differentiation
Differentiation of morpho-physiological forms of Sium latifolium L. using molecular genetic markers
1Kozeko L. E., 1Kordyum E. L., 2Glazko V. I.
  1. M. G. Kholodny Institute of Botany, NAS of Ukraine
    2, Tereschenkivska Str., Kyiv, Ukraine, 01601
  2. Institute of Agroecology of NAAS
    12 Metrologichna Str., Kyiv, Ukraine, 03680


Search for possible molecular genetic markers of three natural morpho-physiological forms of S. latifolium L. (one terrestrial and two aerial-aquatic forms) was carried out with three enzymatic systems – acid phosphatase, peroxidase and esterase. The results of an isozyme analysis of leaves indicate differentiation between these forms on seven isoperoxidases and three isoesterases. Possible patterns of adaptation of the S. latifolium plants to contrast water conditions at the ontogenetic and population-genetic levels are discussed.


[1] Kordyum EL. Phenotypical plasticity in plants: general characteristics, adaptive value, possible mechanisms open questions. Ukr Bot Zh. 2001; 58(2):141-51.
[2] Konarev VG. Plants rotein as genetic markers. Moscow: Kolos, 1983. 320 p.
[3] Solbrig OT, Simpson BB. Components of Regulation of a Population of Dandelions in Michigan. The Journal of Ecology. 1974;62(2):473-86.
[4] Cole CT, Kuchenreuther MA. Molecular markers reveal little genetic differentiation among Aconitum noveboracense and A. columbianum (Ranunculaceae) populations. Am J Bot. 2001;88(2):337-47.
[5] Levites EV. Plants isoenzymes Genetics. Novosibirsk: Nauka, 1986; 145 p.
[6] Glazko VI, Sozinova IA. Animals and plants isoenzymes genetics. Kiev: Urozhai, 1993; 528 p.
[7] McCown BH, McCown DD, Beck GE, Hall TC. Isoenzyme Complements of Dianthus Callus Cultures: Influence of Light and Temperature. American Journal of Botany. 1970;57(2):148-52.
[8] Sarsenbaev KN, Bekov A A-K, Rakhimbaev IR. Isoenzymes in chemosystematics of higher plants. Alma-Ata: Nauka, 1982. 160 p.
[9] Vallejos CE. Enzyme activity staining. Isozymes in plant genetics and breeding. Amsterdam: Elsevier. 1983; Pt A:469—515.
[10] Przybylska Zimniak-Przybylska Z, Dabrowska T. Isoenzyme patterns in several cultivated varieties of barley (Hordeum vulgare L.). Genet Pol. 1978;14(1):61-9.
[11] Soltis DE, Haufler CH, Darrow DC, Gastony GJ. Starch Gel Electrophoresis of Ferns: A Compilation of Grinding Buffers, Gel and Electrode Buffers, and Staining Schedules. American Fern Journal. 1983;73(1):9-27.
[12] Goldovski? AM. [Significance of multiplicity of representatives of each group of substances in the organism]. Zh Evol Biokhim Fiziol. 1972;8(4):353-7.
[13] Andreeva VA. Peroxidase: Participation in plant defense mechanisms. M.: Nauka, 1988; 128 p.
[14] Delpuech J-M, Moreteau B, Chiche J, Pla E, Vouidibio J, David JR. Phenotypic Plasticity and Reaction Norms in Temperate and Tropical Populations of Drosophila melanogaster: Ovarian Size and Developmental Temperature. Evolution. 1995;49(4):670-5.
[15] Golovlev EL. [Metastable phenotype of bacteria]. Mikrobiologiia. 1998;67(2):149-55.
[16] Scheiner SM, Goodnight CJ. The Comparison of Phenotypic Plasticity and Genetic Variation in Populations of the Grass Danthonia spicata. Evolution. 1984;38(4):845-55.
[17] Stearns SC. The Evolutionary Significance of Phenotypic Plasticity. BioScience. 1989;39(7):436–45.
[18] Spitze K, Sadler TD. Evolution of a Generalist Genotype: Multivariate Analysis of the Adaptiveness of Phenotypic Plasticity. Am Nat. 1996;148(s1):S108-23.