Biopolym. Cell. 2003; 19(4):362-366.
Structure and Function of Biopolymers
Influence of aluminium ions on superprecipitalion of the cardiac and skeletal muscle actomyosin
1Bogutska K. I., 2Danilova V. M., 1Minchenko P. G., 1Sheremet L. P., 1Miroshnichenko M. S.
  1. Taras Shevchenko National University of Kyiv
    64, Volodymyrska Str., Kyiv, Ukraine, 01033
  2. Palladin Institute of Biochemistry, NAS of Ukraine
    9, Leontovycha Str., Kyiv, Ukraine, 01601

Abstract

Influence of aluminium ions on superprecipitation of both cardiac and skeletal muscles actomyosin has been investigated. The inhi¬bition of superprecipitation of actomyosin under an increase in the aluminium ions concentration is shown. Effects of metal ions depending on their physical and chemical properties have been analysed in detail.

References

[1] Winship KA. Toxicity of aluminium: a historical review, Part 1. Adverse Drug React Toxicol Rev. 1992 Summer;11(2):123-41.
[2] Nayak P. Aluminum: impacts and disease. Environ Res. 2002;89(2):101-15.
[3] P?rez-Granados AM, Vaquero MP. Silicon, aluminium, arsenic and lithium: essentiality and human health implications. J Nutr Health Aging. 2002;6(2):154-62.
[4] Verstraeten SV, Oteiza PI. Al(3+)-mediated changes in membrane physical properties participate in the inhibition of polyphosphoinositide hydrolysis. Arch Biochem Biophys. 2002;408(2):263-71.
[5] Rudenko SS, Ozerova IO, Rybshch'ka MM, Voloshchuk KO. Effect of aluminum poisoning and gamma-irradiation on the antioxidant system of the body and study of possibilities for correction. Ukr Biokhim Zh. 1998;70(2):83-8.
[6] Zima VL, Minchenko PG. Effect of divalent cations on superprecipitation of actomyosin from skeletal muscles. Fiziol Zh. 1988;34(1):28-33.
[7] Tikunov BA. The character of actin-myosin interaction at two stages of the superprecipitation reaction. Biofizika. 1991;36(2):261-5.
[8] Miroshnichenko NS, Minchenko TG, Shuba MF. Aluminium effect on superprecipitation of actomyosin. Dopovidi Akad Nauk Ukrainy. 1993;(6):78-80.
[9] Levitski? DI, Litvinov IS, Poglazov BF. Study of cation binding to myosin subfragment I using the fluorescent probe Eu3+. Biokhimiia. 1982;47(9):1504-11.
[10] Ponomarev MA, Timofeev VP, Levitsky DI. The difference between ADP-beryllium fluoride and ADP-aluminium fluoride complexes of the spin-labeled myosin subfragment 1. FEBS Lett. 1995;371(3):261-3.
[11] Lorinczy D, Hartvig N, Belagyi J. Analysis of nucleotide myosin complexes in skeletal muscle fibres by DSC and EPR. J Biochem Biophys Methods. 2002;53(1-3):75-87.
[12] Maruta S, Saitoh J, Asakura T. Analysis of conformational changes at the unique loop adjacent to the ATP binding site of smooth muscle myosin using a fluorescent probe. J Biochem. 2000;127(2):199-204.
[13] Arnoys EJ, Schindler M. Aluminum modifies the viscosity of filamentous actin solutions as measured by optical displacement microviscometry. Anal Biochem. 2000;277(1):1-10.
[14] Phan BC, Reisler E. Aluminum fluoride interactions with troponin C. Biophys J. 1993;65(6):2511-6.
[15] Yoshikawa K, Shinohara Y, Terada H, Kato S. Why is Mg2+ necessary for specific cleavage of the terminal phosphoryl group of ATP? Biophys Chem. 1987;27(3):251-4.
[16] Tikunov BA. The effect of magnesium ions on the two-stage kinetics of superprecipitation and ATPase activity of natural actomyosin. Biokhimiia. 1990;55(5):822-8.
[17] Davidovskaya TL, Bogutska KI, Minchenko PG, Miroshnichenko NS. Modulatory effect of aluminium and its complex with quercetin on muscle contractile regulatory mechanisms. Biopolym Cell. 1998; 14(6):534-9.