Biopolym. Cell. 2003; 19(3):211-215.
Reviews
The methods of targeted gene modifications in mammalian developmental studies, problems and prospects
1Anopriyenko O. V., 1Evsikov A. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

During past years, the main stream of developmental studies shifted towards the analysis of distinct genes role during embryogenesis. The development of mouse ES cell technology stimulated the use of modern molecular methods in these investigations. The review is focused on the principles, potency and prospects of such procedures as targeted modification of specific genes by homologous recombination, chromosome manipulation by the Crc-LoxP system, and «gene trapping» strategy.

References

[1] Green PB. Inheritance of Pattern: Analysis from Phenotype to Gene.Integr Comp Biol. 1987;27(2):657–73.
[2] Arnone MI, Davidson EH. The hardwiring of development: organization and function of genomic regulatory systems. Development. 1997;124(10):1851-64.
[3] Oliver SG. From DNA sequence to biological function. Nature. 1996;379(6566):597-600.
[4] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.
[5] Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634-8.
[6] Brook FA, Gardner RL. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci U S A. 1997;94(11):5709-12.
[7] Nagy A, G?cza E, Diaz EM, Prideaux VR, Iv?nyi E, Markkula M, Rossant J. Embryonic stem cells alone are able to support fetal development in the mouse. Development. 1990;110(3):815-21.
[8] Nagy A, Rossant J. Production of completely ES cell-derived fetuses. Gene Targeting: A Principal Approach. Ed. A. L. Joyner. New York: Oxford Univ. press, 1993: 147-79.
[9] Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature. 1985 Sep 19-25;317(6034):230-4.
[10] Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987;51(3):503-12.
[11] Strauss WM, Dausman J, Beard C, Johnson C, Lawrence JB, Jaenisch R. Germ line transmission of a yeast artificial chromosome spanning the murine alpha 1(I) collagen locus. Science. 1993;259(5103):1904-7.
[12] Ram?rez-Solis R, Liu P, Bradley A. Chromosome engineering in mice. Nature. 1995;378(6558):720-4.
[13] Smith AJ, De Sousa MA, Kwabi-Addo B, Heppell-Parton A, Impey H, Rabbitts P. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat Genet. 1995;9(4):376-85.
[14] Doetschman T, Maeda N, Smithies O. Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 1988;85(22):8583-7.
[15] Mansour SL, Thomas KR, Capecchi MR. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 1988;336(6197):348-52.
[16] Johnson RS, Sheng M, Greenberg ME, Kolodner RD, Papaioannou VE, Spiegelman BM. Targeting of nonexpressed genes in embryonic stem cells via homologous recombination. Science. 1989;245(4923):1234-6.
[17] Hasty P, Rivera-P?rez J, Chang C, Bradley A. Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol Cell Biol. 1991;11(9):4509-17.
[18] Chauhan SS, Gottesman MM. Construction of a new universal vector for insertional mutagenesis by homologous recombination. Gene. 1992;120(2):281-5.
[19] Zhang H, Hasty P, Bradley A. Targeting frequency for deletion vectors in embryonic stem cells. Mol Cell Biol. 1994;14(4):2404-10.
[20] Sauer B. Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol. 1993;225:890-900.
[21] Orban PC, Chui D, Marth JD. Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A. 1992;89(15):6861-5.
[22] K?hn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science. 1995;269(5229):1427-9.
[23] Sternberg N, Hamilton D, Austin S, Yarmolinsky M, Hoess R. Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harb Symp Quant Biol. 1981;45 Pt 1:297-309.
[24] Matzuk MM, Finegold MJ, Su JG, Hsueh AJ, Bradley A. Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature. 1992;360(6402):313-9.
[25] Brandon EP, Idzerda RL, McKnight GS. Knockouts. Targeting the mouse genome: a compendium of knockouts (Part I). Curr Biol. 1995;5(6):625-34.
[26] Gossler A, Joyner AL, Rossant J, Skarnes WC. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science. 1989;244(4903):463-5.
[27] Friedrich G, Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991;5(9):1513-23.
[28] Forrester LM, Nagy A, Sam M, Watt A, Stevenson L, Bernstein A, Joyner AL, Wurst W. An induction gene trap screen in embryonic stem cells: Identification of genes that respond to retinoic acid in vitro. Proc Natl Acad Sci U S A. 1996;93(4):1677-82.
[29] Gossler A., Zachgo J. Gene and enhanser trap screens in ES cell chimeras. Gene Targeting: A practical Approach. Ed. A. L. Joyner. New York: Oxford Univ. press, 1993: 181-227.
[30] Joyner AL. Gene targeting and gene trap screens using embryonic stem cells: new approaches to mammalian development. Bioessays. 1991;13(12):649-56.
[31] Xiong JW, Battaglino R, Leahy A, Stuhlmann H. Large-scale screening for developmental genes in embryonic stem cells and embryoid bodies using retroviral entrapment vectors. Dev Dyn. 1998;212(2):181-97.
[32] Hicks GG, Shi EG, Li XM, Li CH, Pawlak M, Ruley HE. Functional genomics in mice by tagged sequence mutagenesis. Nat Genet. 1997;16(4):338-44.
[33] Featherstone T, Huxley C. Extrachromosomal maintenance and amplification of yeast artificial chromosome DNA in mouse cells. Genomics. 1993;17(2):267-78.
[34] Wohlgemuth JG, Kang SH, Bulboaca GH, Nawotka KA, Calos MP. Long-term gene expression from autonomously replicating vectors in mammalian cells. Gene Ther. 1996;3(6):503-12.
[35] Brown WR. Molecular cloning of human telomeres in yeast. Nature. 1989;338(6218):774-6.
[36] Farr C, Fantes J, Goodfellow P, Cooke H. Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci U S A. 1991;88(16):7006-10.
[37] Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H. Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol. 1998;16(5):431-9.
[38] Kelleher ZT, Fu H, Livanos E, Wendelburg B, Gulino S, Vos JM. Epstein-Barr-based episomal chromosomes shuttle 100 kb of self-replicating circular human DNA in mouse cells. Nat Biotechnol. 1998;16(8):762-8.
[39] Tomizuka K, Yoshida H, Uejima H, Kugoh H, Sato K, Ohguma A, Hayasaka M, Hanaoka K, Oshimura M, Ishida I. Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet. 1997;16(2):133-43.
[40] Gilbert SF, Opitz JM, Raff RA. Resynthesizing evolutionary and developmental biology. Ontogenez. 1997; 28(5):325—43.