Biopolym. Cell. 2003; 19(2):169-178.
Molecular and Cell Biotechnologies
Organ-specific and light-inducible expression of genes in transgenic plants: receiving and cloning root-, tuber- and leaf-specific promoters
1Ljoshina L. G., 1Medvedeva T. V., 1Bulko O. V., 1Galkin A. P., 1Kukhar V. P.
  1. Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
    1, Murmans'ka Str., Kyiv, Ukraine, 02094

Abstract

In this study the regulatory sequences ensuring organ-specific and light-dependent expression of several chimerical genes in bacterial and plant cells have been received and investigated. A fragment corresponding to the 5'-end sequence of the chloroplast ribosomal gene S12 (rpS12), a regulatory fragment of the patatin gene λpatl22, a promoter sequence of the gene of small subunit of ribulose-1,5-disphosphate carboxylase (rbcS3A) have been extracted and cloned in vectors containing marker genes. The organ-specific activity of the cloned promoters has been shown. The metallo-thioneine gene has been introduced into the vector constructed. The increased ability of transgenic plants to accumulate the ions of heavy metals in organ's cells with selective promoter-induced expression of the metallothioneine gene has been demonstrated.

References

[1] Streber WR, Willmitzer L. Transgenic Tobacco plants expressing a bacterial detoxifying enzyme are resistant to 2,4-D. Bio/Technology. 1989;7(8):811–6.
[2] Vaeck M, Reynaerts A, H?fte H, Jansens S, De Beuckeleer M, Dean C, et al. Transgenic plants protected from insect attack. Nature. 1987;328(6125):33-7.
[3] Ebskamp MJ, van der Meer IM, Spronk BA, Weisbeek PJ, Smeekens SC. Accumulation of fructose polymers in transgenic tobacco. Biotechnology (N Y). 1994;12(3):272-5.
[4] Sano T, Nagayama A, Ogawa T, Ishida I, Okada Y. Transgenic potato expressing a double-stranded RNA-specific ribonuclease is resistant to potato spindle tuber viroid. Nat Biotechnol. 1997;15(12):1290-4.
[5] Tacke E, Salamini F, Rohde W. Genetic engineering of potato for broad-spectrum protection against virus infection. Nat Biotechnol. 1996;14(11):1597-601.
[6] Walden R, Schell J. Techniques in plant molecular biology--progress and problems. Eur J Biochem. 1990;192(3):563-76.
[7] Draper J, Scott R, Armitage P, Walden R, eds. Plant genetic transformation and gene expression: a Laboratory Manual. Oxford: Blackwell Scientific, 1988; 366 p.
[8] Maniatis T, Fritsch EE., Sambrook J. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Lab. press, 1987. 352 p.
[9] Hindley J, Staden R. DNA sequencing. Amsterdam; New York; Oxford: Elsevier Biomed. press, 1983. 384 p.
[10] Ueda T, Pichersky E, Malik VS, Cashmore AR. Level of expression of the tomato rbcS-3A gene is modulated by a far upstream promoter element in a developmentally regulated manner. Plant Cell. 1989;1(2):217-27.
[11] Dubey IYa, Ljapina TV, Galkin AP, Fedorjak DM. Obtaining of the highly efficient polymer support for the synthesis of the DNA fragments on the basis on the microspheric silica «Silochrom-2». Biopolym Cell. 1993;9(4):26-31.
[12] Mettler IJ. A simple and rapid method for minipreparation of DNA from tissue cultured plant cells. Plant Mol Biol Rep. 1987;5(3):346–9.
[13] Burow MD, Chlan CA, Sen P, Lisca A, Murai N. High-frequency generation of transgenic tobacco plants after modified leaf disk cocultivation withAgrobacterium tumefaciens. Plant Mol Biol Rep. 1990;8(2):124–39.
[14] Shillito RD, Paszkowski J, Potrykus I. Agarose plating and a bead type culture technique enable and stimulate development of protoplast-derived colonies in a number of plant species. Plant Cell Rep. 1983;2(5):244-7.
[15] Potrykus I, Shillito RD. Protoplasts: Isolation, culture, plant regeneration. Methods Enzymol. 1986:549–78.
[16] Medvedeva TV, Yefimenko IM, Grgzelyak NV, Gazaryan KG, Galkin AP. Use of microtuberdiscs for the potato transformation by tuberspecific vectors based on Agrobacterium tumefaciens. Fiziologiia i biokhimiia kul'turnykh rasteniy. 1997; 29(3):187-93.
[17] Herrera-Estrella L, Depicker A, Van Montagu M, Schell J. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature. 1983;303(5914):209–13.
[18] Domansky NN, Gening LV, Galkin AP, Gazaryan KG. [Cloning of the Nicotiana tabacum nuclear DNA sequences that work like promoters in Escherichia coli cells]. Dokl Akad Nauk SSSR. 1986. 291(4): 1004-8.
[19] Grgzelyak NV, Galkin AP, Gening LV, Medvedeva TV, Lioshina LG, Bulko OV, Gasaryan KG. Chloroplast «cryptic» promoter can be activated upon their transfer to plant nuclear genome. Biopolym Cell. 1996; 12(6):87-93.
[20] Pribnow D. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc Natl Acad Sci U S A. 1975;72(3):784-8.
[21] Bohnert HJ, Crouse EJ, Schmitt JM. Organization and expression of plastid genomes. Nucleic acids and proteins in plants II. Berlin; Heidelberg: Springer, 1982: 475-530.
[22] Nussinov R. Some guidelines for identification of recognition sequences: regulatory sequences frequently contain (T)GTG/CAC(A), TGA/TCA and (T)CTC/GAG(A). Biochim Biophys Acta. 1986;866(2-3):93-108.
[23] Mignery GA, Pikaard CS, Park WD. Molecular characterization of the patatin multigene family of potato. Gene. 1988;62(1):27-44.
[24] Rocha-Sosa M, Sonnewald U, Frommer W, Stratmann M, Schell J, Willmitzer L. Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J. 1989;8(1):23-9.
[25] Liu XJ, Prat S, Willmitzer L, Frommer WB. cis regulatory elements directing tuber-specific and sucrose-inducible expression of a chimeric class I patatin promoter/GUS-gene fusion. Mol Gen Genet. 1990;223(3):401-6.
[26] Yefimenko IM, Medvedeva TV, Kovalenko PG, Gazaryan KG, Galkin AP. Organ-specific gene expression in transgenic potato: the cloning a new promoter of a class I patatin gene. Biopolym Cell. 1995; 11(6):96-103.
[27] Paiva E, Lister RM, Park WD. Induction and accumulation of major tuber proteins of potato in stems and petioles. Plant Physiol. 1983;71(1):161-8.
[28] Manzara T, Gruissem W. Organization and expression of the genes encoding ribulose-1,5-bisphosphate carboxylase in higher plants. Photosynth Res. 1988;16(1-2):117-39.
[29] Herrera-Estrella L, Van den Broeck G, Maenhaut R, Van Montagu M, Schell J, Timko M, Cashmore A. Light-inducible and chloroplast-associated expression of a chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector. Nature. 1984 Jul 12-18;310(5973):115-20.
[30] Morelli G, Nagy F, Fraley RT, Rogers SG, Chua N-H. A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase small subunit of pea. Nature. 1985;315(6016):200-4.
[31] Haseloff J, Amos B. GFP in plants. Trends Genet. 1995;11(8):328-9.
[32] Pang SZ, DeBoer DL, Wan Y, Ye G, Layton JG, Neher MK, Armstrong CL, Fry JE, Hinchee MA, Fromm ME. An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol. 1996;112(3):893-900.
[33] K?gi JH, Sch?ffer A. Biochemistry of metallothionein. Biochemistry. 1988;27(23):8509-15.
[34] Misra S, Gedamu L. Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet. 1989;78(2):161-8.
[35] Raskin I, Kumar PN, Dushenkov S, Salt DE. Bioconcentration of heavy metals by plants. Curr Opin Biotechnol. 1994;5(3):285–90.
[36] Rauser WE. Metal-binding pcplidcb in plaub. Sulfur nutrition and assimilation in higher plants. Amsterdam: SPB Acad, publ., 1993: 239-250.