Biopolym. Cell. 2002; 18(4):340-346.
Bioorganic Chemistry
Interaction of cyanine dyes with nucleic acids. New (pyrido)(thio)trimethincyanine dye CCyan 40 for fluorescent labeling of oligonucleotides
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - Taras Shevchenko National University of Kyiv
64, Volodymyrska Str., Kyiv, Ukraine, 01033 - Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
1, Murmans'ka Str., Kyiv, Ukraine, 02094
Abstract
The spectral-luminescent characteristics of the CCyan 40 carbo-cyanine dye in free state and in the presence of DNA and synthetic polynucleotides werp studied. The dye has high molar extinction coefficient (5.7·104 M–1 cm–1 ) and average quantum yield value (0.042). In the presence of DNA, poly(dGCldGC) and poly(dAldT) the quantum yield of CCyan 40 increases in 5.5, 3.8 and 1.8 times respectively. We recommend the dye CCyan 40 for the fluorescent labeling of oligonucleotides using the reaction, proposed by us earlier.
Full text: (PDF, in Ukrainian)
References
[1]
Svanvik N, Westman G, Wang D, Kubista M. Light-up probes: thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution. Anal Biochem. 2000;281(1):26-35.
[2]
Fan ZH, Mangru S, Granzow R, Heaney P, Ho W, Dong Q, Kumar R. Dynamic DNA hybridization on a chip using paramagnetic beads. Anal Chem. 1999;71(21):4851-9.
[3]
Whitcombe D, Newton CR, Little S. Advances in approaches to DNA-based diagnostics. Curr Opin Biotechnol. 1998;9(6):602-8. PubMed PMID: 7752929.
[4]
Selvin PR. Fluorescence resonance energy transfer. Methods Enzymol. 1995;246:300-34.
[5]
Ishiguro T, Saitoh J, Yawata H, Otsuka M, Inoue T, Sugiura Y. Fluorescence detection of specific sequence of nucleic acids by oxazole yellow-linked oligonucleotides. Homogeneous quantitative monitoring of in vitro transcription. Nucleic Acids Res. 1996;24(24):4992-7.
[6]
Yarmoluk SM, Kovalska VB, Smirnova TV, Shandura MP, Kovtun YP, Matsuka GKh. Interaction of cyanine dyes with nucleic acids. 2. Spectroscopic properties of methyleneoxy analogues of Thiazole Orange. Biopolym Cell. 1996; 12(6):74-81.
[7]
Yarmoluk SM, Kostenko AM, Dubey IY. Interaction of cyanine dyes with nucleic acids. Part 19: new method for the covalent labeling of oligonucleotides with pyrylium cyanine dyes. Bioorg Med Chem Lett. 2000;10(19):2201-4.
[8]
Larsson A, Carlsson C, Jonsson M. Characterization of the binding of YO to [poly(dA-dT)]2 and [poly(dG-dC)]2, and of the fluorescent properties of YO and YOYO complexed with the polynucleotides and double-stranded DNA. Biopolymers. 1995;36(2):153-67.
[9]
Jacobsen JP, Pedersen JB, Hansen LF, Wemmer DE. Site selective bis-intercalation of a homodimeric thiazole orange dye in DNA oligonucleotides. Nucleic Acids Res. 1995;23(5):753-60.
[10]
Lukashov SS, Losytskii MYu, Yarmoluk SM, Slominskii YL. The interaction of cyanine dyes with nucleic acids. 12. Novel monomethyne cyanines based on the 5,6-methylenedioxy-benzothiazole and spectral-luminescent properties of thier complexes with nucleic acids. Biopolym Cell. 2000; 16(6):562-72.
[11]
Ishchenko AA. Structure and spectral-luminescent properties of polymethyne cyanine dyes. Kyiv: Naukova dumka 1994. 232 p.
[12]
Mikheikin AL, Zhuze AL, Zasedatelev AS. Binding of symmetrical cyanine dyes into the DNA minor groove. J Biomol Struct Dyn. 2000;18(1):59-72.
[13]
Seifert JL, Connor RE, Kushon SA, Wang M, Armitage BA. Spontaneous assembly of helical cyanine dye aggregates on DNA nanotemplates. J Am Chem Soc. 1999;121(13):2987–95.
[14]
Dobretsov GE. Fluorescent probes in the study of cell membranes and lipoproteins. Moscow: Nauka, 1989. 277 p.
[15]
Kasha M. Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. Radiat Res. 1963;20(1):55-71.
[16]
Herz AH. Dye-dye interactions of cyanines in solution and at AgBr surfaces. Phot Sci Eng. 1974; 18(3): 323-335.
[17]
Nygren J, Svanvik N, Kubista M. The interactions between the fluorescent dye thiazole orange and DNA. Biopolymers. 1998;46(1):39-51.
[18]
Ogul'chansky TYu, Yashchuk VM, Yarmoluk SM, Losytskyy MYu. Interaction of cyanine dyes with nucleic acids. 14. Spectral peculiarities of several monomethyne benzothiazole cyanine dyes and their interaction with DNA. Biopolym Cell. 2000; 16(5):345-55.
[19]
Wang M, Silva GL, Armitage BA. DNA-templated formation of a helical cyanine dye J-aggregate. J Am Chem Soc. 2000;122(41):9977–86.
[20]
Ogul’chansky TY, Losytskyy MY, Kovalska V, Lukashov S, Yashchuk V, Yarmoluk S. Interaction of cyanine dyes with nucleic acids. XVIII. Formation of the carbocyanine dye J-aggregates in nucleic acid grooves. Spectrochimica Acta Part A. 2001;57(13):2705–15.
[21]
Kumar CV, Turner RS, Asuncion EH. Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect. J Photochem Photobiol. A: Chemistry. 1993;74(2-3):231–8.
[22]
H?l?ne C, Toulm? JJ. Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta. 1990;1049(2):99-125.