Biopolym. Cell. 2002; 18(4):267-271.
Reviews
Interaction of recipient genome and transgenes in eukaryoles. Extrachromosomal transgenes
1Krysan K. V., 1Solomko A. P.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Two forms of transgenes are known – integrated into the host genome and extrachromosomal. Although the integrated transgenes are more widespread, the extrachromosomal ones are more interesting and promising for biotechnology and biomedicine. At the same time, the mechanisms determining the fate of the introduced DNA molecule, have not been studied entirely. In this review we discuss these mechanisms and analyze the extrachromosomal transgenes of different origin.

References

[1] Calos MP. The potential of extrachromosomal replicating vectors for gene therapy. Trends Genet. 1996;12(11):463-6.
[2] Cuzin F, Vogt M, Dieckmann M, Berg P. Induction of virus multiplication in 3T3 cells transformed by a thermosensitive mutant of polyoma virus. II. Formation of oligometric polyoma DNA molecules. J Mol Biol. 1970;47(3):317-33.
[3] Rassoulzadegan M, L?opold P, Vailly J, Cuzin F. Germ line transmission of autonomous genetic elements in transgenic mouse strains. Cell. 1986;46(4):513-9.
[4] Moses K, Prives C. A unique subpopulation of murine DNA polymerase alpha/primase specifically interacts with polyomavirus T antigen and stimulates DNA replication. Mol Cell Biol. 1994;14(4):2767-76.
[5] Eki T, Enomoto T, Masutani C, Miyajima A, Takada R, Murakami Y, Ohno T, Hanaoka F, Ui M. Mouse DNA primase plays the principal role in determination of permissiveness for polyomavirus DNA replication. J Virol. 1991;65(9):4874-81.
[6] Kitamura Y, Naito A, Yoshikura H. Illegitimate recombination in a bovine papillomavirus shuttle vector: a high level of site specificity. Biochem Biophys Res Commun. 1991;179(1):251-8.
[7] Gilbert DM, Cohen SN. Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S phase of the cell cycle. Cell. 1987;50(1):59-68.
[8] Ten Hagen KG, Ravnan JB, Cohen SN. Disparate replication properties of integrated and extrachromosomal forms of bovine papilloma virus in ID13 cells. J Mol Biol. 1995;254(2):119-29.
[9] Newbold JE, Xin H, Tencza M, Sherman G, Dean J, Bowden S, Locarnini S. The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes. J Virol. 1995;69(6):3350-7.
[10] Tuttleman JS, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell. 1986;47(3):451-60.
[11] Nikolaev AI, Tchkonia TT, Eristavi-Kafiani KA, Tarantyl VZ. Analysis of rescued plasmid from the transgenic silkworm. Biopolym Cell. 1992; 8(3):29-32.
[12] Nikolaev AI, Tchkonia TT, Kafiani-Eristavi KA. Extrachromosomal lokalization and transmittance of the recombinant plasmid, migroinjected into the silkworm grain. Mol Biol (Mosk). 1991; 25(5): 1136-45.
[13] Krysan KV, Kikhno IM, Strokovskaya LI, Solomko AP. Modification of the DNA structure of plasmid pATV-8 in transgenic mice. 3. Analysis of nucleotide sequence of the extrachromosomal transient, and it's replication in insect cells. Biopolym Cell. 1999; 15(1):57-62.
[14] Calos MP, Lebkowski JS, Botchan MR. High mutation frequency in DNA transfected into mammalian cells. Proc Natl Acad Sci U S A. 1983;80(10):3015-9.
[15] Razzaque A, Mizusawa H, Seidman MM. Rearrangement and mutagenesis of a shuttle vector plasmid after passage in mammalian cells. Proc Natl Acad Sci U S A. 1983;80(10):3010-4.
[16] Newlon CS, Theis JF. The structure and function of yeast ARS elements. Curr Opin Genet Dev. 1993;3(5):752-8.
[17] Sohn JH, Choi ES, Kim CH, Agaphonov MO, Ter-Avanesyan MD, Rhee JS, Rhee SK. A novel autonomously replicating sequence (ARS) for multiple integration in the yeast Hansenula polymorpha DL-1. J Bacteriol. 1996;178(15):4420-8.
[18] Roth GE. Replication analysis of plasmid DNAs injected into Drosophila embryos. Chromosoma. 1991;100(4):267-77.
[19] Masukata H, Satoh H, Obuse C, Okazaki T. Autonomous replication of human chromosomal DNA fragments in human cells. Mol Biol Cell. 1993;4(11):1121-32.
[20] Taira T, Iguchi-Ariga SM, Ariga H. A novel DNA replication origin identified in the human heat shock protein 70 gene promoter. Mol Cell Biol. 1994;14(9):6386-97.
[21] Carroll SM, Gaudray P, De Rose ML, Emery JF, Meinkoth JL, Nakkim E, Subler M, Von Hoff DD, Wahl GM. Characterization of an episome produced in hamster cells that amplify a transfected CAD gene at high frequency: functional evidence for a mammalian replication origin. Mol Cell Biol. 1987;7(5):1740-50.
[22] Valenzuela MS. An autonomously replicating sequence from HeLa DNA shows a similar organization to the yeast ARS1 element. Mol Gen Genet. 1990;220(3):361-5.
[23] Vasetski? ES, Razin SV. Cells of higher eukaryotes contain proteins, interacting with yeast autonomously replicating sequence (ARS). Dokl Akad Nauk. 1993;330(1):111-2.
[24] Allshire RC, Cranston G, Gosden JR, Maule JC, Hastie ND, Fantes PA. A fission yeast chromosome can replicate autonomously in mouse cells. Cell. 1987;50(3):391-403.
[25] Featherstone T, Huxley C. Extrachromosomal maintenance and amplification of yeast artificial chromosome DNA in mouse cells. Genomics. 1993;17(2):267-78.
[26] Schedl A, Beermann F, Thies E, Montoliu L, Kelsey G, Sch?tz G. Transgenic mice generated by pronuclear injection of a yeast artificial chromosome. Nucleic Acids Res. 1992;20(12):3073-7.
[27] Nonet GH, Wahl GM. Introduction of YACs containing a putative mammalian replication origin into mammalian cells can generate structures that replicate autonomously. Somat Cell Mol Genet. 1993;19(2):171-92.
[28] Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H. Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol. 1998;16(5):431-9.
[29] Simpson K, McGuigan A, Huxley C. Stable episomal maintenance of yeast artificial chromosomes in human cells. Mol Cell Biol. 1996;16(9):5117-26.
[30] Donovan S, Diffley JF. Replication origins in eukaroytes. Curr Opin Genet Dev. 1996;6(2):203-7.
[31] Maiti AK, Sinha P. The mcm2 mutation of yeast affects replication, rather than segregation or amplification of the two micron plasmid. J Mol Biol. 1992;224(3):545-58.
[32] Chong JP, Th?mmes P, Blow JJ. The role of MCM/P1 proteins in the licensing of DNA replication. Trends Biochem Sci. 1996;21(3):102-6.
[33] Yan H, Merchant AM, Tye BK. Cell cycle-regulated nuclear localization of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. Genes Dev. 1993;7(11):2149-60.
[34] Treisman JE, Follette PJ, O'Farrell PH, Rubin GM. Cell proliferation and DNA replication defects in a Drosophila MCM2 mutant. Genes Dev. 1995;9(14):1709-15.
[35] Choo KH. Turning on the centromere. Nat Genet. 1998;18(1):3-4.
[36] Williams BC, Murphy TD, Goldberg ML, Karpen GH. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet. 1998;18(1):30-7.
[37] Renault S, Degroote F, Picard G. Identification of short tandemly repeated sequences in extrachromosomal circular DNAs from Drosophila melanogaster embryos. Genome. 1993;36(2):244-54.
[38] Lehman CW, Botchan MR. Segregation of viral plasmids depends on tethering to chromosomes and is regulated by phosphorylation. Proc Natl Acad Sci U S A. 1998;95(8):4338-43.
[39] Murakami Y, Huberman JA, Hurwitz J. Identification, purification, and molecular cloning of autonomously replicating sequence-binding protein 1 from fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1996;93(1):502-7.