Biopolym. Cell. 2002; 18(3):186-195.
Reviews
Interaction of recipient genome and transgenes in eukaryotes. Integrative transgenes
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
The review is focused on the investigations concerning a problem of eukaryotic transgenesis. The forms of transgenes existence, mechanisms of their integration and modification are discussed. The data obtained on the genome – genome interactions during transgenesis are generalised.
Full text: (PDF, in Ukrainian)
References
[1]
Jaenisch R. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci U S A. 1976;73(4):1260-4.
[2]
Breindl M, Doehmer J, Willecke K, Dausman J, Jaenisch R. Germ line integration of Moloney leukemia virus: identification of the chromosomal integration site. Proc Natl Acad Sci U S A. 1979;76(4):1938-42.
[3]
Ottolenghi-Nightingale E. DNA-mediated transformation in mammalian cells. Cell communication. Ed. R. P. Cox. New York, 1974: 33-42.
[4]
Cuzin F, Vogt M, Dieckmann M, Berg P. Induction of virus multiplication in 3T3 cells transformed by a thermosensitive mutant of polyoma virus. II. Formation of oligometric polyoma DNA molecules. J Mol Biol. 1970;47(3):317-33.
[5]
Johnson EM, Jelinek WR. Replication of a plasmid bearing a human Alu-family repeat in monkey COS-7 cells. Proc Natl Acad Sci U S A. 1986;83(13):4660-4.
[6]
Lin S, Gaiano N, Culp P, Burns JC, Friedmann T, Yee JK, Hopkins N. Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science. 1994;265(5172):666-9.
[7]
J?hner D, Stuhlmann H, Jaenisch R. Conformation of free and of integrated Moloney leukemia virus proviral DNA in preleukemic and leukemic BALB/Mo mice. Virology. 1980;101(1):111-23.
[8]
Jaenish R, Jahner D, Grotkopp D. Derivation of three mouse strains carrying Moloney leukemia virus in their germ line at different genetic loci. Animal virus genetics. Ed. B. N. Fields. Hamburg, 1980: 265-279.
[9]
Jaenisch R. Retroviruses and embryogenesis, Seventh Adolf Butenandt Lecture given to the Gesellschaft f?r Biologische Chemie in Damp 2000 on September 29, 1982. Hoppe Seylers Z Physiol Chem. 1982;363(11):1267-71.
[10]
Jaenisch R, J?hner D. Methylation, expression and chromosomal position of genes in mammals. Biochim Biophys Acta. 1984;782(1):1-9.
[11]
Efstratiadis A. Parental imprinting of autosomal mammalian genes. Curr Opin Genet Dev. 1994;4(2):265-80.
[12]
Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366(6453):362-5.
[13]
Neumann B, Kubicka P, Barlow DP. Characteristics of imprinted genes. Nat Genet. 1995;9(1):12-3. Erratum in: Nat Genet 1995 Apr;9(4):451.
[14]
Duhl DM, Vrieling H, Miller KA, Wolff GL, Barsh GS. Neomorphic agouti mutations in obese yellow mice. Nat Genet. 1994;8(1):59-65.
[15]
Chalepakis G, Arnemann J, Slater E, Br?ller HJ, Gross B, Beato M. Differential gene activation by glucocorticoids and progestins through the hormone regulatory element of mouse mammary tumor virus. Cell. 1988;53(3):371-82.
[16]
Kucherlapati R, Skoultchi AI. Introduction of purified genes into mammalian cells. CRC Crit Rev Biochem. 1984;16(4):349-79.
[17]
McKnight GS, Hammer RE, Kuenzel EA, Brinster RL. Expression of the chicken transferrin gene in transgenic mice. Cell. 1983;34(2):335-41.
[18]
Grosschedl R, Weaver D, Baltimore D, Costantini F. Introduction of a mu immunoglobulin gene into the mouse germ line: specific expression in lymphoid cells and synthesis of functional antibody. Cell. 1984;38(3):647-58.
[19]
Kyle JW, Birkenmeier EH, Gwynn B, Vogler C, Hoppe PC, Hoffmann JW, Sly WS. Correction of murine mucopolysaccharidosis VII by a human beta-glucuronidase transgene. Proc Natl Acad Sci U S A. 1990;87(10):3914-8.
[20]
Whitelaw CB, Archibald AL, Harris S, McClenaghan M, Simons JP, Clark AJ. Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice. Transgenic Res. 1991;1(1):3-13.
[21]
Stewart C, Harbers K, J?hner D, Jaenisch R. X chromosome-linked transmission and expression of retroviral genomes microinjected into mouse zygotes. Science. 1983;221(4612):760-2.
[22]
Schnieke A, Harbers K, Jaenisch R. Embryonic lethal mutation in mice induced by retrovirus insertion into the alpha 1(I) collagen gene. Nature. 1983 Jul 28-Aug 3;304(5924):315-20.
[23]
Breindl M, Harbers K, Jaenisch R. Retrovirus-induced lethal mutation in collagen I gene of mice is associated with an altered chromatin structure. Cell. 1984;38(1):9-16.
[24]
Hanna Z, Jankowski M, Tremblay P, Jiang X, Milatovich A, Francke U, Jolicoeur P. The Vin-1 gene, identified by provirus insertional mutagenesis, is the cyclin D2. Oncogene. 1993;8(6):1661-6.
[25]
Iwakura Y, Asano M, Nishimune Y, Kawade Y. Male sterility of transgenic mice carrying exogenous mouse interferon-beta gene under the control of the metallothionein enhancer-promoter. EMBO J. 1988;7(12):3757-62.
[26]
Tarantul VZ, Kuznetsova ED, Gazarian KG. Characteristic of segments of transgenic animal genomes, adjacent to integrated sequences of foreign DNA. Mol Biol (Mosk). 1989;23(4):1036-40.
[27]
Tarantul VZ, Kucheriavy? VV, Makarova IV, Baranov IuN, Begetova TV. Cloning of the DNA fragment of a transgenic mouse containing an integrated recombinant plasmid. Mol Biol (Mosk). 1986;20(1):278-87.
[28]
Makarova IV, Tarantul VZ, Gazarian KG. Structural features of the integration site of foreign DNA in the transgenic mouse genome. Mol Biol (Mosk). 1988;22(6):1553-61.
[29]
Kato M, Matsunaga K, Shimizu N. A novel unusual DNA structure formed in an inverted repeat sequence. Biochem Biophys Res Commun. 1998;246(2):532-4.
[30]
Kirchner J, Connolly CM, Sandmeyer SB. Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science. 1995;267(5203):1488-91.
[31]
Rynditch A, Kadi F, Geryk J, Zoubak S, Svoboda J, Bernardi G. The isopycnic, compartmentalized integration of Rous sarcoma virus sequences. Gene. 1991;106(2):165-72.
[32]
Filipski J. Correlation between molecular clock ticking, codon usage fidelity of DNA repair, chromosome banding and chromatin compactness in germline cells. FEBS Lett. 1987;217(2):184-6.
[33]
Lee MS, Craigie R. A previously unidentified host protein protects retroviral DNA from autointegration. Proc Natl Acad Sci U S A. 1998;95(4):1528-33.
[34]
Akopov SB, Nikolaev LG, Khil PP, Lebedev YB, Sverdlov ED. Long terminal repeats of human endogenous retrovirus K family (HERV-K) specifically bind host cell nuclear proteins. FEBS Lett. 1998;421(3):229-33.
[35]
Stevens SW, Griffith JD. Human immunodeficiency virus type 1 may preferentially integrate into chromatin occupied by L1Hs repetitive elements. Proc Natl Acad Sci U S A. 1994;91(12):5557-61.
[36]
Fanning TG, Morris DW, Cardiff RD, Bradshaw HD Jr. Characterization of an endogenous retrovirus-repetitive DNA chimera in the mouse genome. J Virol. 1985;53(3):998-1000.
[37]
Dudley JP. Mouse mammary tumor proviruses from a T-cell lymphoma are associated with the retroposon L1Md. J Virol. 1988;62(2):472-8.
[38]
Kato S, Anderson RA, Camerini-Otero RD. Foreign DNA introduced by calcium phosphate is integrated into repetitive DNA elements of the mouse L cell genome. Mol Cell Biol. 1986;6(5):1787-95.
[39]
Yang Z, Boffelli D, Boonmark N, Schwartz K, Lawn R. Apolipoprotein(a) gene enhancer resides within a LINE element. J Biol Chem. 1998;273(2):891-7.
[40]
Keshet E, Schiff R, Itin A. Mouse retrotransposons: a cellular reservoir of long terminal repeat (LTR) elements with diverse transcriptional specificities. Adv Cancer Res. 1991;56:215-51.
[41]
Sandmeyer SB, Hansen LJ, Chalker DL. Integration specificity of retrotransposons and retroviruses. Annu Rev Genet. 1990;24:491-518.
[42]
Choo KB, Chen CM, Han CP, Cheng WT, Au LC. Molecular analysis of cellular loci disrupted by papillomavirus 16 integration in cervical cancer: frequent viral integration in topologically destabilized and transcriptionally active chromosomal regions. J Med Virol. 1996;49(1):15-22.
[43]
Spradling AC, Stern DM, Kiss I, Roote J, Laverty T, Rubin GM. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci U S A. 1995;92(24):10824-30.
[44]
Craigie R. Hotspots and warm spots: integration specificity of retroelements. Trends Genet. 1992;8(6):187-90.
[45]
Schroth GP, Chou PJ, Ho PS. Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J Biol Chem. 1992;267(17):11846-55.
[46]
Wu HY, Shyy SH, Wang JC, Liu LF. Transcription generates positively and negatively supercoiled domains in the template. Cell. 1988;53(3):433-40.
[47]
Liebman SW, Newnam G. A ubiquitin-conjugating enzyme, RAD6, affects the distribution of Ty1 retrotransposon integration positions. Genetics. 1993;133(3):499-508.
[48]
Edelmann W, Kr?ger B, Goller M, Horak I. A recombination hotspot in the LTR of a mouse retrotransposon identified in an in vitro system. Cell. 1989;57(6):937-46.
[49]
Swamynathan SK, Nambiar A, Guntaka RV. Role of single-stranded DNA regions and Y-box proteins in transcriptional regulation of viral and cellular genes. FASEB J. 1998;12(7):515-22.
[50]
Bo?n F, Rodr?guez JM, G?mez-M?rquez J. A non-hypervariable human minisatellite strongly stimulates in vitro intramolecular homologous recombination. J Mol Biol. 1998;278(3):499-505.
[51]
Kobori JA, Strauss E, Minard K, Hood L. Molecular analysis of the hotspot of recombination in the murine major histocompatibility complex. Science. 1986;234(4773):173-9.
[52]
R?diger NS, Gregersen N, Kielland-Brandt MC. One short well conserved region of Alu-sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucleic Acids Res. 1995;23(2):256-60.
[53]
Albertoni M, Daub DM, Arden KC, Viars CS, Powell C, Van Meir EG. Genetic instability leads to loss of both p53 alleles in a human glioblastoma. Oncogene. 1998;16(3):321-6.
[54]
Golden JW, Mulligan ME, Haselkorn R. Different recombination site specificity of two developmentally regulated genome rearrangements. Nature. 1987 Jun 11-17;327(6122):526-9.
[55]
Kodadek T. Mechanistic parallels between DNA replication, recombination and transcription. Trends Biochem Sci. 1998;23(2):79-83.
[56]
Grimm C, Schaer P, Munz P, Kohli J. The strong ADH1 promoter stimulates mitotic and meiotic recombination at the ADE6 gene of Schizosaccharomyces pombe. Mol Cell Biol. 1991;11(1):289-98.
[57]
Ch?vez S, Aguilera A. The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev. 1997;11(24):3459-70.
[58]
Nickoloff JA. Transcription enhances intrachromosomal homologous recombination in mammalian cells. Mol Cell Biol. 1992;12(12):5311-8.
[59]
Blackwell TK, Moore MW, Yancopoulos GD, Suh H, Lutzker S, Selsing E, Alt FW. Recombination between immunoglobulin variable region gene segments is enhanced by transcription. Nature. 1986 Dec 11-17;324(6097):585-9.
[60]
Lauster R, Reynaud CA, M?rtensson IL, Peter A, Bucchini D, Jami J, Weill JC. Promoter, enhancer and silencer elements regulate rearrangement of an immunoglobulin transgene. EMBO J. 1993;12(12):4615-23.
[61]
Thyagarajan B, Johnson BL, Campbell C. The effect of target site transcription on gene targeting in human cells in vitro. Nucleic Acids Res. 1995;23(14):2784-90.
[62]
Gibbs M, Collick A, Kelly RG, Jeffreys AJ. A tetranucleotide repeat mouse minisatellite displaying substantial somatic instability during early preimplantation development. Genomics. 1993;17(1):121-8.
[63]
Brykov VA, Kukhlevski? AD. Relation between changes in the palindromic fraction and DNA replication during early stages of sea urchin development. Mol Biol (Mosk). 1988;22(2):377-83.
[64]
Dickinson DG, Baker RF. Evidence for translocation of DNA sequences during sea urchin embryogenesis. Proc Natl Acad Sci U S A. 1978;75(11):5627-30.
[65]
Kubota S, Ishibashi T, Kohno S. A germline restricted, highly repetitive DNA sequence in Paramyxine atami: an interspecifically conserved, but somatically eliminated, element. Mol Gen Genet. 1997;256(3):252-6.
[66]
Jeffreys AJ, Wilson V, Thein SL. Hypervariable 'minisatellite' regions in human DNA. Nature. 1985 Mar 7-13;314(6006):67-73.
[67]
Klobutcher LA. Developmentally excised DNA sequences in Euplotes crassus capable of forming G quartets. Proc Natl Acad Sci U S A. 1995;92(6):1979-83.
[68]
Collick A, Norris ML, Allen MJ, Bois P, Barton SC, Surani MA, Jeffreys AJ. Variable germline and embryonic instability of the human minisatellite MS32 (D1S8) in transgenic mice. EMBO J. 1994;13(23):5745-53.
[69]
Kelly RG. Similar origins of two mouse minisatellites within transposon-like LTRs. Genomics. 1994;24(3):509-15.
[70]
Pipiras E, Coquelle A, Bieth A, Debatisse M. Interstitial deletions and intrachromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome. EMBO J. 1998;17(1):325-33.
[71]
McClintock B. The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics. 1941;26(2):234-82.
[72]
Korenberg JR, Rykowski MC. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell. 1988;53(3):391-400.
[73]
Freudenreich CH, Kantrow SM, Zakian VA. Expansion and length-dependent fragility of CTG repeats in yeast. Science. 1998;279(5352):853-6.
[74]
Ma C, Martin S, Trask B, Hamlin JL. Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in Chinese hamster cells. Genes Dev. 1993;7(4):605-20.
[75]
Weinert T. DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell. 1998;94(5):555-8.
[76]
Ramsden DA, Gellert M. Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J. 1998;17(2):609-14.
[77]
Nagaki S, Yamamoto M, Yumoto Y, Shirakawa H, Yoshida M, Teraoka H. Non-histone chromosomal proteins HMG1 and 2 enhance ligation reaction of DNA double-strand breaks. Biochem Biophys Res Commun. 1998;246(1):137-41.
[78]
Kozlov AP, Reshetnikov VL, Korzh VP, Ne?fakh AA. Foreign DNA in developing embryos of the loach Misgurnus Fossilis L. Mol Biol (Mosk). 1988;22(6):1614-22.
[79]
Reichenberger S, Pfeiffer P. Cloning, purification and characterization of DNA polymerase beta from Xenopus laevis--studies on its potential role in DNA-end joining. Eur J Biochem. 1998;251(1-2):81-90.
[80]
Jaeger U, Purtscher B, Karth GD, Knapp S, Mannhalter C, Lechner K. Mechanism of the chromosomal translocation t(14;18) in lymphoma: detection of a 45-Kd breakpoint binding protein. Blood. 1993;81(7):1833-40.
[81]
Windle B, Draper BW, Yin YX, O'Gorman S, Wahl GM. A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes Dev. 1991;5(2):160-74.
[82]
Kuznetsova ED, Andreeva LE, Serova IA, Trenkner A, Tarantul VZ. New data on the type of structural changes in DNA of simian adenovirus SA7 microinjected into mouse zygotes. Mol Gen Mikrobiol Virusol. 1989;(4):6-10.
[83]
Tarantul VZ, Makarova IV, Andreeva LE, Smirnova MB, Gazarian TG. DNA of the simian adenovirus and its expression in organs of the offspring of transgenic mice. Mol Gen Mikrobiol Virusol. 1986;(1):22-6.
[84]
Rachlin J, Wollmann R, Dohrmann G. Inoculation of simian virus 40 into pregnant hamsters can induce tumors in offspring. Lab Invest. 1988;58(1):26-30.
[85]
Gurney T Jr, Gurney EG. Spontaneous rearrangement of integrated simian virus 40 DNA in nine transformed rodent cell lines. J Virol. 1989;63(1):165-74.
[86]
Gazarian KG, Gol'tsov VA, Nabirochkin SD, Eshkind LG, Tarantul VZ. Introduction of DNA sequences of Rous sarcoma virus into Drosophila and mouse genomes by microinjections into ova. Mol Biol (Mosk). 1985;19(3):760-6.
[87]
Gazarian KG, Nabirochkin SD, Shakhbazian AK, Shibanova EN, Tikhoneko TI. Induction of unstable mutations in Drosophila melanogaster by the microinjection of oncogenic viruses and their DNA into early embryos. Genetika. 1984;20(8):1237-43.
[88]
Reik W, Weiher H, Jaenisch R. Replication-competent Moloney murine leukemia virus carrying a bacterial suppressor tRNA gene: selective cloning of proviral and flanking host sequences. Proc Natl Acad Sci U S A. 1985;82(4):1141-5.
[89]
Hunter DJ, Gurney EG. The genomic instability associated with integrated simian virus 40 DNA is dependent on the origin of replication and early control region. J Virol. 1994;68(2):787-96.
[90]
Varela-Echavarr?a A, Prorock CM, Ron Y, Dougherty JP. High rate of genetic rearrangement during replication of a Moloney murine leukemia virus-based vector. J Virol. 1993;67(11):6357-64.
[91]
Wilkie TM, Palmiter RD. Analysis of the integrant in MyK-103 transgenic mice in which males fail to transmit the integrant. Mol Cell Biol. 1987;7(5):1646-55.
[92]
Rynditch AV, Yatsula BA, Hloz?nek I, Dost?lov? V, Mach O. Virus-specific nucleotide sequences in duck cells transformed by chicken and duck-adapted Rous sarcoma virus. Folia Biol (Praha). 1986;32(2):145-53.