Biopolym. Cell. 2002; 18(3):179-185.
Reviews
The characteristics of glial fibrillary acidic protein – component of astroglial intermediate filaments
- Dnipropetrovsk National University Oles Gonchar
72, Gagarin Av., Dnipropetrovs'k, Ukraine, 49050
Abstract
The review is devoted to the characteristics of glial fibrillary acidic protein (GFAP) – the astrocyte-specific component of the intermediate filaments. In immunochemistry this marker is applied at diagnostics of astrocytic tumor, investigation of astrocyte development and gliosis. GFAP may be involved in the complex cellular processes controlling the cell morphology, adhesion, and proliferation
Full text: (PDF, in Ukrainian)
References
[1]
Mitchison TJ. Evolution of a dynamic cytoskeleton. Philos Trans R Soc Lond B Biol Sci. 1995;349(1329):299–304.
[2]
Fuchs E, Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345-82.
[3]
Skalli O, Goldman RD. Recent insights into the assembly, dynamics, and function of intermediate filament networks. Cell Motil Cytoskeleton. 1991;19(2):67-79.
[4]
Eng LF. Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol. 1985;8(4-6):203-14.
[5]
O'Callaghan JP, Brinton RE, McEwen BS. Glucocorticoids regulate the synthesis of glial fibrillary acidic protein in intact and adrenalectomized rats but do not affect its expression following brain injury. J Neurochem. 1991;57(3):860-9.
[6]
Nichols NR, Masters JN, Finch CE. Changes in gene expression in hippocampus in response to glucocorticoids and stress. Brain Res Bull. 1990;24(5):659-62.
[7]
Laping NJ, Nichols NR, Day JR, Finch CE. Corticosterone differentially regulates the bilateral response of astrocyte mRNAs in the hippocampus to entorhinal cortex lesions in male rats. Brain Res Mol Brain Res. 1991;10(4):291-7.
[8]
Rozovsky I, Laping NJ, Hogan TH, Huang CJ, Teter B, Nichols NR, Finch CE. Regulation of GFAP mRNA by glucocorticoids in vitro. Soc Neurosci Abstr. 1993; 19: 43.
[9]
Tsuneishi S, Takada S, Motoike T, Ohashi T, Sano K, Nakamura H. Effects of dexamethasone on the expression of myelin basic protein, proteolipid protein, and glial fibrillary acidic protein genes in developing rat brain. Brain Res Dev Brain Res. 1991;61(1):117-23.
[10]
Day JR, Laping NJ, McNeill TH, Schreiber SS, Pasinetti G, Finch CE. Castration enhances expression of glial fibrillary acidic protein and sulfated glycoprotein-2 in the intact and lesion-altered hippocampus of the adult male rat. Mol Endocrinol. 1990;4(12):1995-2002.
[11]
Luquin S, Naftolin F, Garcia-Segura LM. Natural fluctuation and gonadal hormone regulation of astrocyte immunoreactivity in dentate gyrus. J Neurobiol. 1993;24(7):913-24.
[12]
Torres-Aleman I, Rejas MT, Pons S, Garcia-Segura LM. Estradiol promotes cell shape changes and glial fibrillary acidic protein redistribution in hypothalamic astrocytes in vitro: a neuronal-mediated effect. Glia. 1992;6(3):180-7.
[13]
Day JR, Laping NJ, Lampert-Etchells M, Brown SA, O'Callaghan JP, McNeill TH, Finch CE. Gonadal steroids regulate the expression of glial fibrillary acidic protein in the adult male rat hippocampus. Neuroscience. 1993;55(2):435-43.
[14]
Garcia-Segura LM, Suarez I, Segovia S, Tranque PA, Cal?s JM, Aguilera P, Olmos G, Guillam?n A. The distribution of glial fibrillary acidic protein in the adult rat brain is influenced by the neonatal levels of sex steroids. Brain Res. 1988;456(2):357-63.
[15]
Gould E, Frankfurt M, Westlind-Danielsson A, McEwen BS. Developing forebrain astrocytes are sensitive to thyroid hormone. Glia. 1990;3(4):283-92.
[16]
Benveniste EN, Whitaker JN, Gibbs DA, Sparacio SM, Butler JL. Human B cell growth factor enhances proliferation and glial fibrillary acidic protein gene expression in rat astrocytes. Int Immunol. 1989;1(3):219-28.
[17]
Monnet-Tschudi F, Honegger P. Influence of epidermal growth factor on the maturation of fetal rat brain cells in aggregate culture. An immunocytochemical study. Dev Neurosci. 1989;11(1):30-40.
[18]
Perraud F, Labourdette G, Eclancher F, Sensenbrenner M. Primary cultures of astrocytes from different brain areas of newborn rats and effects of basic fibroblast growth factor. Dev Neurosci. 1990;12(1):11-21.
[19]
Balasingam V, Tejada-Berges T, Wright E, Bouckova R, Yong VW. Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J Neurosci. 1994;14(2):846-56.
[20]
Keles GE, Berger MS, Lim R, Zaheer A, Denton AL, Silber JR. Expression of glial fibrillary acidic protein in human medulloblastoma cells treated with recombinant glia maturation factor-beta. Oncol Res. 1992;4(10):431-7.
[21]
Oh YJ, Markelonis GJ, Oh TH. Effects of interleukin-1 beta and tumor necrosis factor-alpha on the expression of glial fibrillary acidic protein and transferrin in cultured astrocytes. Glia. 1993;8(2):77-86.
[22]
Giulian D, Woodward J, Young DG, Krebs JF, Lachman LB. Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci. 1988;8(7):2485-90.
[23]
Nishiyama K, Collodi P, Barnes D. Regulation of glial fibrillary acidic protein in serum-free mouse embryo (SFME) cells by leukemia inhibitory factor and related peptides. Neurosci Lett. 1993;163(1):114-6.
[24]
Sakai Y, Rawson C, Lindburg K, Barnes D. Serum and transforming growth factor beta regulate glial fibrillary acidic protein in serum-free-derived mouse embryo cells. Proc Natl Acad Sci U S A. 1990;87(21):8378-82.
[25]
Yoshida T, Takeuchi M. Establishment of an astrocyte progenitor cell line: induction of glial fibrillary acidic protein and fibronectin by transforming growth factor-beta 1. J Neurosci Res. 1993;35(2):129-37.
[26]
Berezin VA, Velik YaV. Specific proteins of nervous tissue. K.: Vyshcha shkola, 1990. 263 p.
[27]
Gard AL, White FP, Dutton GR. Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver. J Neuroimmunol. 1985;8(4-6):359-75.
[28]
Nedzvetski? VS, Berezich VA, Oberniak TI, Zhmareva EN. Characteristics of specific intermediate filament proteins in human brain tumors. Biokhimiia. 1986;51(11):1843-50.
[29]
Dahl D. Glial fibrillary acidic protein from bovine and rat brain. Degradation in tissues and homogenates. Biochim Biophys Acta. 1976;420(1):142-54.
[30]
Schlaepfer WW, Zimmerman UP. Calcium-mediated breakdown of glial filaments and neurofilaments in rat optic nerve and spinal cord. Neurochem Res. 1981;6(3):243-55.
[31]
DeArmond SJ, Fajardo M, Naughton SA, Eng LF. Degradation of glial fibrillary acidic protein by a calcium dependent proteinase: an electroblot study. Brain Res. 1983;262(2):275-82.
[32]
Tardy M, Fages C, Le Prince G, Rolland B, Nunez J. Regulation of the glial fibrillary acidic protein (GFAP) and of its encoding mRNA in the developing brain and in cultured astrocytes. Adv Exp Med Biol. 1990;265:41-52.
[33]
Legrand A, Alonso G. Pregnenolone reverses the age-dependent accumulation of glial fibrillary acidic protein within astrocytes of specific regions of the rat brain. Brain Res. 1998;802(1-2):125-33.
[34]
Bignami A, Raju T, Dahl D. Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons. In vivo and in vitro immunofluorescence study of the rat embryo with vimentin and neurofilament antisera. Dev Biol. 1982;91(2):286-95.
[35]
Landry CF, Ivy GO, Brown IR. Developmental expression of glial fibrillary acidic protein mRNA in the rat brain analyzed by in situ hybridization. J Neurosci Res. 1990;25(2):194-203.
[36]
Hatten ME, Fishell G, Stitt TN. Astroglia as a scafold for development of the CNS. J Neurosci. 1990; 75(2): 455-65.
[37]
Tardy M, Fages C, Riol H, LePrince G, Rataboul P, Charriere-Bertrand C, Nunez J. Developmental expression of the glial fibrillary acidic protein mRNA in the central nervous system and in cultured astrocytes. J Neurochem. 1989;52(1):162-7.
[38]
Chiu FC, Goldman JE. Synthesis and turnover of cytoskeletal proteins in cultured astrocytes. J Neurochem. 1984;42(1):166-74.
[39]
Rolland B, Le Prince G, Fages C, Nunez J, Tardy M. GFAP turnover during astroglial proliferation and differentiation. Brain Res Dev Brain Res. 1990;56(1):144-9.
[40]
Ito J, Kato T, Tanaka R. Cytoskeletal regulation of normal rat glioblasts differentiated by glia maturation factor. Neurochem Int. 1990;16(2):133-40.
[41]
Goetschy JF, Ulrich G, Aunis D, Ciesielski-Treska J. The organization and solubility properties of intermediate filaments and microtubules of cortical astrocytes in culture. J Neurocytol. 1986;15(3):375-87.
[42]
Brenner M. Structure and transcriptional regulation of the GFAP gene. Brain Pathol. 1994;4(3):245-57.
[43]
Galea E, Dupouey P, Feinstein DL. Glial fibrillary acidic protein mRNA isotypes: expression in vitro and in vivo. J Neurosci Res. 1995;41(4):452-61.
[44]
Laping NJ, Teter B, Nichols NR, Rozovsky I, Finch CE. Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors. Brain Pathol. 1994;4(3):259-75.
[45]
Nakamura Y, Takeda M, Angelides KJ, Tada K, Hariguchi S, Nishimura T. Assembly, disassembly, and exchange of glial fibrillary acidic protein. Glia. 1991;4(1):101-10.
[46]
Chou YH, Rosevear E, Goldman RD. Phosphorylation and disassembly of intermediate filaments in mitotic cells. Proc Natl Acad Sci U S A. 1989;86(6):1885-9.
[47]
Quinlan RA, Moir RD, Stewart M. Expression in Escherichia coli of fragments of glial fibrillary acidic protein: characterization, assembly properties and paracrystal formation. J Cell Sci. 1989;93 ( Pt 1):71-83.
[48]
Noetzel MJ. Phosphorylation of the glial fibrillary acidic protein. J Neurosci Res. 1990;27(2):184-92.
[49]
Pollenz RS, McCarthy KD. Analysis of cyclic AMP-dependent changes in intermediate filament protein phosphorylation and cell morphology in cultured astroglia. J Neurochem. 1986;47(1):9-17.
[50]
Nishizawa K, Yano T, Shibata M, Ando S, Saga S, Takahashi T, Inagaki M. Specific localization of phosphointermediate filament protein in the constricted area of dividing cells. J Biol Chem. 1991;266(5):3074-9.
[51]
Yang Y, Dowling J, Yu QC, Kouklis P, Cleveland DW, Fuchs E. An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell. 1996;86(4):655-65.
[52]
Wiche G. Plectin: general overview and appraisal of its potential role as a subunit protein of the cytomatrix. Crit Rev Biochem Mol Biol. 1989;24(1):41-67.
[53]
Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, Itoh T, Itohara S. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron. 1995;14(1):29-41.
[54]
Liedtke W, Edelmann W, Bieri PL, Chiu FC, Cowan NJ, Kucherlapati R, Raine CS. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron. 1996;17(4):607-15.
[55]
Hatten ME. Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. Trends Neurosci. 1990;13(5):179-84.
[56]
Rouget M, Araud D, Seite R, Prochiantz A, Autillo-Touati A. Astrocyte-regulated synaptogenesis: an in vitro ultrastructural study. Neurosci Lett. 1993;150(1):85-8.
[57]
Keyser DO, Pellmar TC. Synaptic transmission in the hippocampus: critical role for glial cells. Glia. 1994;10(4):237-43.
[58]
Chamak B, Fellous A, Glowinski J, Prochiantz A. MAP2 expression and neuritic outgrowth and branching are coregulated through region-specific neuro-astroglial interactions. J Neurosci. 1987;7(10):3163-70.
[59]
Hurwitz AA, Berman JW, Rashbaum WK, Lyman WD. Human fetal astrocytes induce the expression of blood-brain barrier specific proteins by autologous endothelial cells. Brain Res. 1993;625(2):238-43.
[60]
Yu AC, Lee YL, Eng LF. Astrogliosis in culture: I. The model and the effect of antisense oligonucleotides on glial fibrillary acidic protein synthesis. J Neurosci Res. 1993;34(3):295-303.
[61]
Kalderon N, Alfieri AA, Fuks Z. Beneficial effects of x-irradiation on recovery of lesioned mammalian central nervous tissue. Proc Natl Acad Sci U S A. 1990;87(24):10058-62.
[62]
Lindsay RM. Reactive gliosis. Astrocytes. Eds S. Fedoroff, A. Vernadakis. New York: Acad, press, 1986: 231-262.
[63]
Chiang CS, McBride WH, Withers HR. Myelin-associated changes in mouse brain following irradiation. Radiother Oncol. 1993;27(3):229-36.
[64]
Robbins DS, Shirazi Y, Drysdale BE, Lieberman A, Shin HS, Shin ML. Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. J Immunol. 1987;139(8):2593-7.
[65]
Fontana A, Fierz W, Wekerle H. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature. 1984 Jan 19-25;307(5948):273-6.
[66]
McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, Zhang CL, Pearce RA, Chiu SY, Messing A. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A. 1996;93(13):6361-6.
[67]
Leswhchinskaya IA, Duka TI, Chernaya VI. Rats behavioral responses of and content neurospecific proteins in their brain after a single radiation exposure. Neirofiziologiia. 2000; 32(1):22-8.
[68]
Duka TI, Leswhchinskaya IA, Chernaya VI. Influence of middle hemic hypoxic injury ob the NCAM and GFAP contents in brains of developing and adults animals. Dopovidi Nats Akad Nauk Ukrainy. 2000; (4):164-70.
[69]
Dzyak LA, Duka TI, Drozdov AL, Chernaya VI. Glial fibrillary acidic protein in rat brain structures under conditions of training for a passive defensive habit. Neurophysiology. 1999; 31(4): 290-1.
[70]
Huang AM, Lee EH. Identification of a novel glial fibrillary acidic protein mRNA isotype related to memory retention in rats. Neuroreport. 1997;8(7):1619-24.