Biopolym. Cell. 2001; 17(6):540-545.
Structure and Function of Biopolymers
Specific interaction of the amino acid model carboxylic group with purine transforms it into its N7H rare tautomeric form: results of vacuum ab initio calculations
1Samijlenko S. P., 2Bogdan T. V., 2Trygubenko S. A., 1, 2Hovorun D. M.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. National University of Kyiv-Mohyla Academy
    2, Skovorody Str., Kyiv, Ukraine, 04655

Abstract

According to ab initio calculations (MP2/6-31G**//HF/6-31G**) In vacuum (which is an acceptable imitation of the hydrophobic medium at the sites of protein-nucleic acid contacts), specific interaction of the acetate onion (model of deprotonated residues of aspartic and glutamic acids) with the purine transforms this base from the N9H ground-state tautomeric form into the N7H high-energy tautomer (hE-EN7H-EN9H is about 4 kcul/mol) with the energy advantage of 0.46 kcal/moL The effect is achieved due to the higher complexation energy of the N7H tautomer as compared to the N9H one, which overcompensates the energy excess (about 3.90 kcal/mol) of the rare tautomer. A possible biological significance of the data obtained for more profound understanding of elementary acts of protein-nucleic acid recognition, in particular, the enzyme catalysis, is discussed.

References

[1] Pavlov BA, Terent'ev AP. The course of Organic Chemistry. M: Goskhimizdat, 1962. 592 p.
[2] Handbook of Biochemistry and Molecular Biology: Nucleic Acids. Ed. G. D. Fasman. New York: CRC press, 1986; Vol. 1. 637 p.
[3] Heterocyclic compounds. Ed. Elderfield RC. Vol 8 Tetrazoles, Tetrazines and Purines and related ring systems. Wiley and Sons 1976.
[4] Lin J, Yu C, Peng S, Akiyama I, Li K, Lee LK, LeBreton PR. Ultraviolet photoelectron studies of the ground-state electronic structure and gas-phase tautomerism of purine and adenine. J Am Chem Soc. 1980;102(14):4627–31.
[5] Pecourt J-ML, Peon J, Kohler B. Ultrafast Internal Conversion of Electronically Excited RNA and DNA Nucleosides in Water. J Am Chem Soc. 2000;122(38):9348–9.
[6] Watson DG, Sweet RM, Marsh RE. The crystal and molecular structure of purine. Acta Crystallogr. 1965;19(4):573-80.
[7] Novak A. Intermolecular hydrogen bond vibrations. Croat chem acta. 1982;55(1—2):147-69.
[8] Zorkii PM, Razumaeva AE. The coexistence of molecules having different structures in organic crystals. J Struct Chem. 1979;20(3):390–3.
[9] Grant DM, Pugmire RJ. Carbon-13 magnetic resonance. XIX. Benzimidazole, purine, and their anionic and cationic species. J Am Chem Soc. 1971;93(8):1880–7.
[10] Majoube M, Milli? P, Chinsky L, Turpin P., Vergoten G. Resonance Raman spectra for purine. J Mol Struct. 1995;355(2):147–58.
[11] Borin AC, Serrano-Andr?s L, F?lscher MP, Roos BO. A theoretical study of the electronic spectra of N 9 and N 7 purine tautomers. J Phys Chem A. 1999;103(12):1838–45.
[12] Stepanian SG, Sheina GG, Radchenko ED, Blagoi YP. Theoretical and experimental studies of adenine, purine and pyrimidine isolated molecule structure. J Mol Struct. 1985;131(3-4):333–46.
[13] Sheina GG, Radchenko ED, Stepanian SG, Blagoi YuP. Prototropic tautomerizm of nucleic acid purine bases. Stud biophys. 1986; 114(1-3):123-31
[14] Nowak MJ, Lapinski L, Kwiatkowski JS. An infrared matrix isolation study of tautomerism in purine and adenine. Chem Phys Lett. 1989;157(1-2):14-8.
[15] Nowak MJ, Lapinski L, Kwiatkowski JS, Leszczynski J. Infrared matrix isolation and ab initio quantum mechanical studies of purine and adenine. Spectrochim Acta A. 1991;47(1):87–103.
[16] Nowak MJ, Rostkowska H, Lapinski L, Kwiatkowski JS, Leszczynski J. Experimental matrix isolation and theoretical ab initio HF/6-31G(d, p) studies of infrared spectra of purine, adenine and 2-chloroadenine. Spectrochim Acta A. 1994;50(6):1081–94.
[17] Nowak MJ, Rostkowska H, Lapinski L, Kwiatkowski JS, Leszczynski J. Tautomerism N(9)H - N(7)H of purine, adenine, and 2-chloroadenine: combined experimental IR matrix isolation and ab initio quantum mechanical studies. J Phys Chem. 1994;98(11):2813–6.
[18] Caminati W, Maccaferri G, Favero PG, Favero LB. Free jet absorption millimeter wave spectrum of purine. Chem Phys Lett. 1996;251(3-4):189–92.
[19] Nir E, Kleinermanns K, Grace L, de Vries MS. On the photochemistry of purine nucleobases. J Phys Chem A. 2001;105(21):5106–10.
[20] Govorun DM, Kondratyuk IV, Zheltovsky NV. Acidic-basic properties of pyrimidine, imidazole and purine in vacuum: calculation by AMI method. Biopolym Cell. 1995; 11(5):21-23.
[21] Govorun DM, Kondratyuk IV, Zheltovsky NV. Prototropic molecular-zwitterion tautomerism of purine. Biopolym Cell. 1995; 11(6):45-50.
[22] Govorun DM, Kondratyuk IV, Zheltovsky NV. The influence of protonation and deprotonation, on the acidic-basic properties of purine, pyrimidine and imidazole. Biopolym Cell. 1995; 11(3-4):29-34.
[23] Shishkin OV, Gorb L, Leszczynski J. Conformational flexibility of pyrimidine ring in adenine and related compounds. Chem Phys Lett. 2000;330(5-6):603–11.
[24] Samijlenko SP, Bogdan TV, Trygubenko SA, Potyahaylo AL, Hovorun DM. Deprotonated carboxylic group of amino acids transforms adenine into its rare prototropic tautomers. Ukr Biokhim Zh. 2000;72(6):92-5.
[25] Samijlenko SP, Potyahaylo AL, Stepanyugin AV, Bogdan TV, Dzerzhyns'kyi ME, Hovorun DM. Specific interactions of izoguanine with neutral and deprotonated carboxylic group of amino acids: results af model quantum chemical calculations. Ukr Biokhim Zh. 2001;73(3):147—51.
[26] Samijlenko SP, Kondratyuk IV, Potyahaylo AL, Stepanyugin AV, Hovorun DM. Specific interactions of deprotonated carboxylic group with uracil and thymine provoke diketo - keto-enolic tautomeric transition in bases. Ukr Biokhim Zh. 2001; 73(4):128-31.
[27] Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, et al. General atomic and molecular electronic structure system. J Comp Chem. 1993;14(11):1347–63.
[28] Broo A, Holm?n A. Ab initio MP2 and DFT calculations of geometry and solution tautomerism of purine and some purine derivatives. Chem Phys. 1996;211(1-3):147–61.
[29] Ha T-K, Keller MJ, Gunde R, Gunthard HH. Quantum chemical study of structure, energy, rotational constants, electric dipole moments and electric field gradients of all isomeric adenines. J Mol Struct. THEOCHEM. 1996;364(2-3):161–81.
[30] Cleland WW, Frey PA, Gerlt JA. The low barrier hydrogen bond in enzymatic catalysis. J Biol Chem. 1998;273(40):25529-32.
[31] Kondratyuk IV, Samijlenko SP, Kolomiets' IM, Hovorun DM. Prototropic molecular-zwitterionic tautomerism of xanthine and hypoxanthine. J Mol Struct. 2000; 523(1-3):109-18.
[32] Kondratyuk IV, Samijlenko SP, Kolomiets IM, Potyahaylo AL, Hovorun DM. Prototropic molecular-zwitterionic tautomerism of xanthine and hypoxanthine: unexpected biological view. Biopolym Cell. 2000; 16(2):124-137.
[33] Koshland DE. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci U S A. 1958;44(2):98-104.